在遗传关联研究中,基于集合的稀疏替代品测试在测试结果集合与解释因素集合时的差异。

IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biostatistics Pub Date : 2023-12-15 DOI:10.1093/biostatistics/kxac036
Ryan Sun, Andy Shi, Xihong Lin
{"title":"在遗传关联研究中,基于集合的稀疏替代品测试在测试结果集合与解释因素集合时的差异。","authors":"Ryan Sun, Andy Shi, Xihong Lin","doi":"10.1093/biostatistics/kxac036","DOIUrl":null,"url":null,"abstract":"<p><p>Set-based association tests are widely popular in genetic association settings for their ability to aggregate weak signals and reduce multiple testing burdens. In particular, a class of set-based tests including the Higher Criticism, Berk-Jones, and other statistics have recently been popularized for reaching a so-called detection boundary when signals are rare and weak. Such tests have been applied in two subtly different settings: (a) associating a genetic variant set with a single phenotype and (b) associating a single genetic variant with a phenotype set. A significant issue in practice is the choice of test, especially when deciding between innovated and generalized type methods for detection boundary tests. Conflicting guidance is present in the literature. This work describes how correlation structures generate marked differences in relative operating characteristics for settings (a) and (b). The implications for study design are significant. We also develop novel power bounds that facilitate the aforementioned calculations and allow for analysis of individual testing settings. In more concrete terms, our investigation is motivated by translational expression quantitative trait loci (eQTL) studies in lung cancer. These studies involve both testing for groups of variants associated with a single gene expression (multiple explanatory factors) and testing whether a single variant is associated with a group of gene expressions (multiple outcomes). Results are supported by a collection of simulation studies and illustrated through lung cancer eQTL examples.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"171-187"},"PeriodicalIF":1.8000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724113/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differences in set-based tests for sparse alternatives when testing sets of outcomes compared to sets of explanatory factors in genetic association studies.\",\"authors\":\"Ryan Sun, Andy Shi, Xihong Lin\",\"doi\":\"10.1093/biostatistics/kxac036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Set-based association tests are widely popular in genetic association settings for their ability to aggregate weak signals and reduce multiple testing burdens. In particular, a class of set-based tests including the Higher Criticism, Berk-Jones, and other statistics have recently been popularized for reaching a so-called detection boundary when signals are rare and weak. Such tests have been applied in two subtly different settings: (a) associating a genetic variant set with a single phenotype and (b) associating a single genetic variant with a phenotype set. A significant issue in practice is the choice of test, especially when deciding between innovated and generalized type methods for detection boundary tests. Conflicting guidance is present in the literature. This work describes how correlation structures generate marked differences in relative operating characteristics for settings (a) and (b). The implications for study design are significant. We also develop novel power bounds that facilitate the aforementioned calculations and allow for analysis of individual testing settings. In more concrete terms, our investigation is motivated by translational expression quantitative trait loci (eQTL) studies in lung cancer. These studies involve both testing for groups of variants associated with a single gene expression (multiple explanatory factors) and testing whether a single variant is associated with a group of gene expressions (multiple outcomes). Results are supported by a collection of simulation studies and illustrated through lung cancer eQTL examples.</p>\",\"PeriodicalId\":55357,\"journal\":{\"name\":\"Biostatistics\",\"volume\":\" \",\"pages\":\"171-187\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724113/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxac036\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxac036","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基于集合的关联检验因其能够聚合微弱信号并减轻多重检验负担而在遗传关联研究中广受欢迎。尤其是最近流行的一类基于集合的检验,包括高级批判、Berk-Jones 和其他统计方法,可以在信号稀少而微弱时达到所谓的检测边界。这类检验被应用于两种有细微差别的情况:(a) 将遗传变异集与单一表型联系起来;(b) 将单一遗传变异与表型集联系起来。在实践中,一个重要的问题是检验方法的选择,特别是在决定用创新型方法还是广义型方法进行检测边界检验时。文献中存在相互矛盾的指导意见。这项工作描述了相关结构如何在设置(a)和(b)中产生相对运行特征的明显差异。这对研究设计具有重要意义。我们还开发了新的功率边界,以方便上述计算,并允许对个别测试设置进行分析。更具体地说,我们的研究是受肺癌表达量性状位点(eQTL)转化研究的启发。这些研究既包括测试与单个基因表达(多个解释因素)相关的变异群,也包括测试单个变异是否与一组基因表达(多个结果)相关。结果得到了一系列模拟研究的支持,并通过肺癌 eQTL 示例进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differences in set-based tests for sparse alternatives when testing sets of outcomes compared to sets of explanatory factors in genetic association studies.

Set-based association tests are widely popular in genetic association settings for their ability to aggregate weak signals and reduce multiple testing burdens. In particular, a class of set-based tests including the Higher Criticism, Berk-Jones, and other statistics have recently been popularized for reaching a so-called detection boundary when signals are rare and weak. Such tests have been applied in two subtly different settings: (a) associating a genetic variant set with a single phenotype and (b) associating a single genetic variant with a phenotype set. A significant issue in practice is the choice of test, especially when deciding between innovated and generalized type methods for detection boundary tests. Conflicting guidance is present in the literature. This work describes how correlation structures generate marked differences in relative operating characteristics for settings (a) and (b). The implications for study design are significant. We also develop novel power bounds that facilitate the aforementioned calculations and allow for analysis of individual testing settings. In more concrete terms, our investigation is motivated by translational expression quantitative trait loci (eQTL) studies in lung cancer. These studies involve both testing for groups of variants associated with a single gene expression (multiple explanatory factors) and testing whether a single variant is associated with a group of gene expressions (multiple outcomes). Results are supported by a collection of simulation studies and illustrated through lung cancer eQTL examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
期刊最新文献
Recoverability of causal effects under presence of missing data: a longitudinal case study. Fast standard error estimation for joint models of longitudinal and time-to-event data based on stochastic EM algorithms. The impact of coarsening an exposure on partial identifiability in instrumental variable settings. Selection processes, transportability, and failure time analysis in life history studies. Functional quantile principal component analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1