{"title":"基于空间频率的活体脑成像球差校正。","authors":"Aoi Gohma, Naoya Adachi, Yasuo Yonemaru, Daiki Horiba, Kaori Higuchi, Daisuke Nishiwaki, Eiji Yokoi, Yoshihiro Ue, Atsushi Miyawaki, Hiromu Monai","doi":"10.1093/jmicro/dfad035","DOIUrl":null,"url":null,"abstract":"<p><p>Optical errors, including spherical aberrations, hinder high-resolution imaging of biological samples due to biochemical components and physical properties. We developed the Deep-C microscope system to achieve aberration-free images, employing a motorized correction collar and contrast-based calculations. However, current contrast-maximization techniques, such as the Brenner gradient method, inadequately assess specific frequency bands. The Peak-C method addresses this issue, but its arbitrary neighbor selection and susceptibility to the noise limit its effectiveness. In this paper, we emphasize the importance of a broad spatial frequency range for accurate spherical aberration correction and propose Peak-F. This spatial frequency-based system utilizes a fast Fourier transform as a bandpass filter. This approach overcomes Peak-C's limitations and comprehensively covers the low-frequency domain of image spatial frequencies.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"37-46"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849036/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spatial frequency-based correction of the spherical aberration in living brain imaging.\",\"authors\":\"Aoi Gohma, Naoya Adachi, Yasuo Yonemaru, Daiki Horiba, Kaori Higuchi, Daisuke Nishiwaki, Eiji Yokoi, Yoshihiro Ue, Atsushi Miyawaki, Hiromu Monai\",\"doi\":\"10.1093/jmicro/dfad035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optical errors, including spherical aberrations, hinder high-resolution imaging of biological samples due to biochemical components and physical properties. We developed the Deep-C microscope system to achieve aberration-free images, employing a motorized correction collar and contrast-based calculations. However, current contrast-maximization techniques, such as the Brenner gradient method, inadequately assess specific frequency bands. The Peak-C method addresses this issue, but its arbitrary neighbor selection and susceptibility to the noise limit its effectiveness. In this paper, we emphasize the importance of a broad spatial frequency range for accurate spherical aberration correction and propose Peak-F. This spatial frequency-based system utilizes a fast Fourier transform as a bandpass filter. This approach overcomes Peak-C's limitations and comprehensively covers the low-frequency domain of image spatial frequencies.</p>\",\"PeriodicalId\":74193,\"journal\":{\"name\":\"Microscopy (Oxford, England)\",\"volume\":\" \",\"pages\":\"37-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849036/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jmicro/dfad035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jmicro/dfad035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spatial frequency-based correction of the spherical aberration in living brain imaging.
Optical errors, including spherical aberrations, hinder high-resolution imaging of biological samples due to biochemical components and physical properties. We developed the Deep-C microscope system to achieve aberration-free images, employing a motorized correction collar and contrast-based calculations. However, current contrast-maximization techniques, such as the Brenner gradient method, inadequately assess specific frequency bands. The Peak-C method addresses this issue, but its arbitrary neighbor selection and susceptibility to the noise limit its effectiveness. In this paper, we emphasize the importance of a broad spatial frequency range for accurate spherical aberration correction and propose Peak-F. This spatial frequency-based system utilizes a fast Fourier transform as a bandpass filter. This approach overcomes Peak-C's limitations and comprehensively covers the low-frequency domain of image spatial frequencies.