Xing Jin, Wei Zheng, Songyuan Chi, Taihao Cui, Wei He
{"title":"miR-506-3p通过靶向CCL2-CCR2轴减轻小胶质细胞激活来缓解臂丛撕脱伤后的神经性疼痛。","authors":"Xing Jin, Wei Zheng, Songyuan Chi, Taihao Cui, Wei He","doi":"10.1159/000528450","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroinflammation results in neuropathic pain (NP) following brachial plexus avulsion (BPA). This research was designed for investigating the function of miR-506-3p in BPA-induced NP. A total brachial plexus root avulsion model was produced in adult rats as well as IL-1β-treated motoneuron-like NSC-34 cells and the LPS-treated microglia cell line BV2 for in vivo and in vitro experiments, respectively. RT-PCR and Western blot were performed to detect the profiles of miR-506-3p, CCL2 and CCR2, NF-κB, FOXO3a, TNF-α, IL-1β, and IL-6 in cells or the spinal cord close to the tBPI lesion. Neuronal apoptosis was evaluated by immunohistochemistry in vivo. CCK8, TUNEL staining, and the lactic dehydrogenase kit were adopted for the evaluation of neuronal viability or damage in vitro. RNA immunoprecipitation and dual luciferase reporter gene assays analyzed the targeted association between miR-506-3p and CCL2. As shown by the data, miR-506-3p was vigorously less expressed, while CCL2-CCR2, NF-κB TNF-α, IL-1β, and IL-6 were upregulated in the spinal cord with tBPI. Overexpression of miR-506-3p attenuated neuronal apoptosis and microglial inflammation. Mechanistically, CCL2 was a downstream target of miR-506-3p. Upregulating miR-506-3p dampened CCL2-CCR2 and NF-κB activation in the spinal cord and microglia. miR-506-3p had neuroprotective and inflammation-fighting functions in the tBPI rat model via CCL2/CCR2/NF-κB axis.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"45 1","pages":"37-52"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10129035/pdf/","citationCount":"2","resultStr":"{\"title\":\"miR-506-3p Relieves Neuropathic Pain following Brachial Plexus Avulsion via Mitigating Microglial Activation through Targeting the CCL2-CCR2 Axis.\",\"authors\":\"Xing Jin, Wei Zheng, Songyuan Chi, Taihao Cui, Wei He\",\"doi\":\"10.1159/000528450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroinflammation results in neuropathic pain (NP) following brachial plexus avulsion (BPA). This research was designed for investigating the function of miR-506-3p in BPA-induced NP. A total brachial plexus root avulsion model was produced in adult rats as well as IL-1β-treated motoneuron-like NSC-34 cells and the LPS-treated microglia cell line BV2 for in vivo and in vitro experiments, respectively. RT-PCR and Western blot were performed to detect the profiles of miR-506-3p, CCL2 and CCR2, NF-κB, FOXO3a, TNF-α, IL-1β, and IL-6 in cells or the spinal cord close to the tBPI lesion. Neuronal apoptosis was evaluated by immunohistochemistry in vivo. CCK8, TUNEL staining, and the lactic dehydrogenase kit were adopted for the evaluation of neuronal viability or damage in vitro. RNA immunoprecipitation and dual luciferase reporter gene assays analyzed the targeted association between miR-506-3p and CCL2. As shown by the data, miR-506-3p was vigorously less expressed, while CCL2-CCR2, NF-κB TNF-α, IL-1β, and IL-6 were upregulated in the spinal cord with tBPI. Overexpression of miR-506-3p attenuated neuronal apoptosis and microglial inflammation. Mechanistically, CCL2 was a downstream target of miR-506-3p. Upregulating miR-506-3p dampened CCL2-CCR2 and NF-κB activation in the spinal cord and microglia. miR-506-3p had neuroprotective and inflammation-fighting functions in the tBPI rat model via CCL2/CCR2/NF-κB axis.</p>\",\"PeriodicalId\":50585,\"journal\":{\"name\":\"Developmental Neuroscience\",\"volume\":\"45 1\",\"pages\":\"37-52\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10129035/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000528450\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000528450","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
miR-506-3p Relieves Neuropathic Pain following Brachial Plexus Avulsion via Mitigating Microglial Activation through Targeting the CCL2-CCR2 Axis.
Neuroinflammation results in neuropathic pain (NP) following brachial plexus avulsion (BPA). This research was designed for investigating the function of miR-506-3p in BPA-induced NP. A total brachial plexus root avulsion model was produced in adult rats as well as IL-1β-treated motoneuron-like NSC-34 cells and the LPS-treated microglia cell line BV2 for in vivo and in vitro experiments, respectively. RT-PCR and Western blot were performed to detect the profiles of miR-506-3p, CCL2 and CCR2, NF-κB, FOXO3a, TNF-α, IL-1β, and IL-6 in cells or the spinal cord close to the tBPI lesion. Neuronal apoptosis was evaluated by immunohistochemistry in vivo. CCK8, TUNEL staining, and the lactic dehydrogenase kit were adopted for the evaluation of neuronal viability or damage in vitro. RNA immunoprecipitation and dual luciferase reporter gene assays analyzed the targeted association between miR-506-3p and CCL2. As shown by the data, miR-506-3p was vigorously less expressed, while CCL2-CCR2, NF-κB TNF-α, IL-1β, and IL-6 were upregulated in the spinal cord with tBPI. Overexpression of miR-506-3p attenuated neuronal apoptosis and microglial inflammation. Mechanistically, CCL2 was a downstream target of miR-506-3p. Upregulating miR-506-3p dampened CCL2-CCR2 and NF-κB activation in the spinal cord and microglia. miR-506-3p had neuroprotective and inflammation-fighting functions in the tBPI rat model via CCL2/CCR2/NF-κB axis.
期刊介绍:
''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.