分布式系统的通用退出机制

IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Life Pub Date : 2023-03-01 DOI:10.1162/artl_a_00393
Larry Bull;Haixia Liu
{"title":"分布式系统的通用退出机制","authors":"Larry Bull;Haixia Liu","doi":"10.1162/artl_a_00393","DOIUrl":null,"url":null,"abstract":"This letter uses a modified form of the NK model introduced to explore aspects of distributed control. In particular, a previous result suggesting the use of dynamically formed subgroups within the overall system can be more effective than global control is further explored. The conditions under which the beneficial distributed control emerges are more clearly identified, and the reason for the benefit over traditional global control is suggested as a generally applicable dropout mechanism to improve learning in such systems.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 2","pages":"146-152"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generalised Dropout Mechanism for Distributed Systems\",\"authors\":\"Larry Bull;Haixia Liu\",\"doi\":\"10.1162/artl_a_00393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter uses a modified form of the NK model introduced to explore aspects of distributed control. In particular, a previous result suggesting the use of dynamically formed subgroups within the overall system can be more effective than global control is further explored. The conditions under which the beneficial distributed control emerges are more clearly identified, and the reason for the benefit over traditional global control is suggested as a generally applicable dropout mechanism to improve learning in such systems.\",\"PeriodicalId\":55574,\"journal\":{\"name\":\"Artificial Life\",\"volume\":\"29 2\",\"pages\":\"146-152\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10301848/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10301848/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

这封信使用NK模型的修改形式来探索分布式控制的各个方面。特别是,先前的结果表明,在整个系统中使用动态形成的子群比全局控制更有效。更清楚地识别了有益的分布式控制出现的条件,并提出了优于传统全局控制的原因,即普遍适用的辍学机制,以改善此类系统的学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Generalised Dropout Mechanism for Distributed Systems
This letter uses a modified form of the NK model introduced to explore aspects of distributed control. In particular, a previous result suggesting the use of dynamically formed subgroups within the overall system can be more effective than global control is further explored. The conditions under which the beneficial distributed control emerges are more clearly identified, and the reason for the benefit over traditional global control is suggested as a generally applicable dropout mechanism to improve learning in such systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Life
Artificial Life 工程技术-计算机:理论方法
CiteScore
4.70
自引率
7.70%
发文量
38
审稿时长
>12 weeks
期刊介绍: Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as: Artificial chemistry and the origins of life Self-assembly, growth, and development Self-replication and self-repair Systems and synthetic biology Perception, cognition, and behavior Embodiment and enactivism Collective behaviors of swarms Evolutionary and ecological dynamics Open-endedness and creativity Social organization and cultural evolution Societal and technological implications Philosophy and aesthetics Applications to biology, medicine, business, education, or entertainment.
期刊最新文献
Complexity, Artificial Life, and Artificial Intelligence. Neurons as Autoencoders. Evolvability in Artificial Development of Large, Complex Structures and the Principle of Terminal Addition. Investigating the Limits of Familiarity-Based Navigation. Network Bottlenecks and Task Structure Control the Evolution of Interpretable Learning Rules in a Foraging Agent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1