用于骨组织工程应用的人间充质干细胞和创新支架。

IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING Tissue Engineering. Part B, Reviews Pub Date : 2023-10-01 Epub Date: 2023-06-30 DOI:10.1089/ten.TEB.2022.0217
Elisa Mazzoni, Maria Rosa Iaquinta, Maria Mosaico, Raffaella De Pace, Antonio D'Agostino, Mauro Tognon, Fernanda Martini
{"title":"用于骨组织工程应用的人间充质干细胞和创新支架。","authors":"Elisa Mazzoni,&nbsp;Maria Rosa Iaquinta,&nbsp;Maria Mosaico,&nbsp;Raffaella De Pace,&nbsp;Antonio D'Agostino,&nbsp;Mauro Tognon,&nbsp;Fernanda Martini","doi":"10.1089/ten.TEB.2022.0217","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cell-based therapy is a significant topic in regenerative medicine, with a predominant role being played by human mesenchymal stem cells (hMSCs). The hMSCs have been shown to be suitable in regenerative medicine for the treatment of bone tissue. In the last few years, the average lifespan of our population has gradually increased. The need of biocompatible materials, which exhibit high performances, such as efficiency in bone regeneration, has been highlighted by aging. Current studies emphasize the benefit of using biomimetic biomaterials, also known as scaffolds, for bone grafts to speed up bone repair at the fracture site. For the healing of injured bone and bone regeneration, regenerative medicine techniques utilizing a combination of these biomaterials, together with cells and bioactive substances, have drawn a great interest. Cell therapy, based on the use of hMSCs, alongside materials for the healing of damaged bone, has obtained promising results. In this work, several aspects of cell biology, tissue engineering, and biomaterials applied to bone healing/regrowth will be considered. In addition, the role of hMSCs in these fields and recent progress in clinical applications are discussed. Impact Statement The restoration of large bone defects is both a challenging clinical issue and a socioeconomic problem on a global scale. Different therapeutic approaches have been proposed for human mesenchymal stem cells (hMSCs), considering their paracrine effect and potential differentiation into osteoblasts. However, different limitations are still to be overcome in using hMSCs as a therapeutic opportunity in bone fracture repair, including hMSC administration methods. To identify a suitable hMSC delivery system, new strategies have been proposed using innovative biomaterials. This review provides an update of the literature on hMSC/scaffold clinical applications for the management of bone fractures.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":"514-531"},"PeriodicalIF":5.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Mesenchymal Stem Cells and Innovative Scaffolds for Bone Tissue Engineering Applications.\",\"authors\":\"Elisa Mazzoni,&nbsp;Maria Rosa Iaquinta,&nbsp;Maria Mosaico,&nbsp;Raffaella De Pace,&nbsp;Antonio D'Agostino,&nbsp;Mauro Tognon,&nbsp;Fernanda Martini\",\"doi\":\"10.1089/ten.TEB.2022.0217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stem cell-based therapy is a significant topic in regenerative medicine, with a predominant role being played by human mesenchymal stem cells (hMSCs). The hMSCs have been shown to be suitable in regenerative medicine for the treatment of bone tissue. In the last few years, the average lifespan of our population has gradually increased. The need of biocompatible materials, which exhibit high performances, such as efficiency in bone regeneration, has been highlighted by aging. Current studies emphasize the benefit of using biomimetic biomaterials, also known as scaffolds, for bone grafts to speed up bone repair at the fracture site. For the healing of injured bone and bone regeneration, regenerative medicine techniques utilizing a combination of these biomaterials, together with cells and bioactive substances, have drawn a great interest. Cell therapy, based on the use of hMSCs, alongside materials for the healing of damaged bone, has obtained promising results. In this work, several aspects of cell biology, tissue engineering, and biomaterials applied to bone healing/regrowth will be considered. In addition, the role of hMSCs in these fields and recent progress in clinical applications are discussed. Impact Statement The restoration of large bone defects is both a challenging clinical issue and a socioeconomic problem on a global scale. Different therapeutic approaches have been proposed for human mesenchymal stem cells (hMSCs), considering their paracrine effect and potential differentiation into osteoblasts. However, different limitations are still to be overcome in using hMSCs as a therapeutic opportunity in bone fracture repair, including hMSC administration methods. To identify a suitable hMSC delivery system, new strategies have been proposed using innovative biomaterials. This review provides an update of the literature on hMSC/scaffold clinical applications for the management of bone fractures.</p>\",\"PeriodicalId\":23134,\"journal\":{\"name\":\"Tissue Engineering. Part B, Reviews\",\"volume\":\" \",\"pages\":\"514-531\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering. Part B, Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEB.2022.0217\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEB.2022.0217","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

基于干细胞的治疗是再生医学中的一个重要课题,其中人类间充质干细胞(hMSCs)发挥着主要作用。hMSCs已被证明适用于再生医学中用于骨组织的治疗。在过去几年中,我们人口的平均寿命逐渐延长。随着年龄的增长,对具有高性能(如骨再生效率)的生物相容性材料的需求日益突出。目前的研究强调了使用仿生生物材料(也称为支架)进行骨移植以加快骨折部位骨修复的好处。对于损伤骨的愈合和骨再生,利用这些生物材料与细胞和生物活性物质相结合的再生医学技术引起了极大的兴趣。基于hMSCs的使用以及用于愈合受损骨的材料的细胞治疗已经获得了有希望的结果。在这项工作中,将考虑细胞生物学、组织工程和应用于骨愈合/再生的生物材料的几个方面。此外,还讨论了人骨髓间充质干细胞在这些领域的作用以及临床应用的最新进展。影响声明大型骨缺损的修复既是一个具有挑战性的临床问题,也是一个全球性的社会经济问题。考虑到人间充质干细胞的旁分泌作用和向成骨细胞分化的潜力,人们对其提出了不同的治疗方法。然而,使用hMSC作为骨折修复的治疗机会,包括hMSC给药方法,仍有不同的局限性需要克服。为了确定合适的hMSC递送系统,已经提出了使用创新生物材料的新策略。这篇综述提供了关于hMSC/支架在骨折治疗中的临床应用的最新文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human Mesenchymal Stem Cells and Innovative Scaffolds for Bone Tissue Engineering Applications.

Stem cell-based therapy is a significant topic in regenerative medicine, with a predominant role being played by human mesenchymal stem cells (hMSCs). The hMSCs have been shown to be suitable in regenerative medicine for the treatment of bone tissue. In the last few years, the average lifespan of our population has gradually increased. The need of biocompatible materials, which exhibit high performances, such as efficiency in bone regeneration, has been highlighted by aging. Current studies emphasize the benefit of using biomimetic biomaterials, also known as scaffolds, for bone grafts to speed up bone repair at the fracture site. For the healing of injured bone and bone regeneration, regenerative medicine techniques utilizing a combination of these biomaterials, together with cells and bioactive substances, have drawn a great interest. Cell therapy, based on the use of hMSCs, alongside materials for the healing of damaged bone, has obtained promising results. In this work, several aspects of cell biology, tissue engineering, and biomaterials applied to bone healing/regrowth will be considered. In addition, the role of hMSCs in these fields and recent progress in clinical applications are discussed. Impact Statement The restoration of large bone defects is both a challenging clinical issue and a socioeconomic problem on a global scale. Different therapeutic approaches have been proposed for human mesenchymal stem cells (hMSCs), considering their paracrine effect and potential differentiation into osteoblasts. However, different limitations are still to be overcome in using hMSCs as a therapeutic opportunity in bone fracture repair, including hMSC administration methods. To identify a suitable hMSC delivery system, new strategies have been proposed using innovative biomaterials. This review provides an update of the literature on hMSC/scaffold clinical applications for the management of bone fractures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering. Part B, Reviews
Tissue Engineering. Part B, Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
12.80
自引率
1.60%
发文量
150
期刊介绍: Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.
期刊最新文献
Biomechanics of Negative-Pressure-Assisted Liposuction and Their Influence on Fat Regeneration. Artificial Neural Networks: A New Frontier in Dental Tissue Regeneration. Efficacy of Fresh Versus Preserved Amniotic Membrane Grafts for Ocular Surface Reconstruction: Meta-analysis. Tissue Engineering Nasal Cartilage Grafts with Three-Dimensional Printing: A Comprehensive Review. Delivery Strategies of Growth Factors in Cartilage Tissue Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1