{"title":"CD47抗体:通过结合下一代噬菌体显示数据和多个肽描述符来鉴定CD47结合肽。","authors":"Bowen Li, Heng Chen, Jian Huang, Bifang He","doi":"10.1007/s12539-023-00575-x","DOIUrl":null,"url":null,"abstract":"<p><p>CD47/SIRPα pathway is a new breakthrough in the field of tumor immunity after PD-1/PD-L1. While current monoclonal antibody therapies targeting CD47/SIRPα have demonstrated some anti-tumor effectiveness, there are several inherent limitations associated with these formulations. In the paper, we developed a predictive model that combines next-generation phage display (NGPD) and traditional machine learning methods to distinguish CD47 binding peptides. First, we utilized NGPD biopanning technology to screen CD47 binding peptides. Second, ten traditional machine learning methods based on multiple peptide descriptors and three deep learning methods were used to build computational models for identifying CD47 binding peptides. Finally, we proposed an integrated model based on support vector machine. During the five-fold cross-validation, the integrated predictor demonstrated specificity, accuracy, and sensitivity of 0.755, 0.764, and 0.772, respectively. Furthermore, an online bioinformatics tool called CD47Binder has been developed for the integrated predictor. This tool is readily accessible on http://i.uestc.edu.cn/CD47Binder/cgi-bin/CD47Binder.pl .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"578-589"},"PeriodicalIF":3.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CD47Binder: Identify CD47 Binding Peptides by Combining Next-Generation Phage Display Data and Multiple Peptide Descriptors.\",\"authors\":\"Bowen Li, Heng Chen, Jian Huang, Bifang He\",\"doi\":\"10.1007/s12539-023-00575-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CD47/SIRPα pathway is a new breakthrough in the field of tumor immunity after PD-1/PD-L1. While current monoclonal antibody therapies targeting CD47/SIRPα have demonstrated some anti-tumor effectiveness, there are several inherent limitations associated with these formulations. In the paper, we developed a predictive model that combines next-generation phage display (NGPD) and traditional machine learning methods to distinguish CD47 binding peptides. First, we utilized NGPD biopanning technology to screen CD47 binding peptides. Second, ten traditional machine learning methods based on multiple peptide descriptors and three deep learning methods were used to build computational models for identifying CD47 binding peptides. Finally, we proposed an integrated model based on support vector machine. During the five-fold cross-validation, the integrated predictor demonstrated specificity, accuracy, and sensitivity of 0.755, 0.764, and 0.772, respectively. Furthermore, an online bioinformatics tool called CD47Binder has been developed for the integrated predictor. This tool is readily accessible on http://i.uestc.edu.cn/CD47Binder/cgi-bin/CD47Binder.pl .</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"578-589\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-023-00575-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-023-00575-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
CD47Binder: Identify CD47 Binding Peptides by Combining Next-Generation Phage Display Data and Multiple Peptide Descriptors.
CD47/SIRPα pathway is a new breakthrough in the field of tumor immunity after PD-1/PD-L1. While current monoclonal antibody therapies targeting CD47/SIRPα have demonstrated some anti-tumor effectiveness, there are several inherent limitations associated with these formulations. In the paper, we developed a predictive model that combines next-generation phage display (NGPD) and traditional machine learning methods to distinguish CD47 binding peptides. First, we utilized NGPD biopanning technology to screen CD47 binding peptides. Second, ten traditional machine learning methods based on multiple peptide descriptors and three deep learning methods were used to build computational models for identifying CD47 binding peptides. Finally, we proposed an integrated model based on support vector machine. During the five-fold cross-validation, the integrated predictor demonstrated specificity, accuracy, and sensitivity of 0.755, 0.764, and 0.772, respectively. Furthermore, an online bioinformatics tool called CD47Binder has been developed for the integrated predictor. This tool is readily accessible on http://i.uestc.edu.cn/CD47Binder/cgi-bin/CD47Binder.pl .
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.