现实世界电子病历数据的地理空间差异:评估区域偏见和对卫生公平的潜在影响的分析工作流程。

Serena Jinchen Xie, Flavia P Kapos, Stephen J Mooney, Sean Mooney, Kari A Stephens, Cynthia Chen, Andrea L Hartzler, Abhishek Pratap
{"title":"现实世界电子病历数据的地理空间差异:评估区域偏见和对卫生公平的潜在影响的分析工作流程。","authors":"Serena Jinchen Xie,&nbsp;Flavia P Kapos,&nbsp;Stephen J Mooney,&nbsp;Sean Mooney,&nbsp;Kari A Stephens,&nbsp;Cynthia Chen,&nbsp;Andrea L Hartzler,&nbsp;Abhishek Pratap","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Real-world data (RWD) like electronic health records (EHR) has great potential for secondary use by health systems and researchers. However, collected primarily for efficient health care, EHR data may not equitably represent local regions and populations, impacting the generalizability of insights learned from it. We assessed the geospatial representativeness of regions in a large health system EHR data using a spatial analysis workflow, which provides a data-driven way to quantify geospatial representation and identify adequately represented regions. We applied the workflow to investigate geospatial patterns of overweight/obesity and depression patients to find regional \"hotspots\" for potential targeted interventions. Our findings show the presence of geospatial bias in EHR and demonstrate the workflow to identify spatial clusters after adjusting for bias due to the geospatial representativeness. This work highlights the importance of evaluating geospatial representativeness in RWD to guide targeted deployment of limited healthcare resources and generate equitable real-world evidence.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283143/pdf/2310.pdf","citationCount":"0","resultStr":"{\"title\":\"Geospatial divide in real-world EHR data: Analytical workflow to assess regional biases and potential impact on health equity.\",\"authors\":\"Serena Jinchen Xie,&nbsp;Flavia P Kapos,&nbsp;Stephen J Mooney,&nbsp;Sean Mooney,&nbsp;Kari A Stephens,&nbsp;Cynthia Chen,&nbsp;Andrea L Hartzler,&nbsp;Abhishek Pratap\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Real-world data (RWD) like electronic health records (EHR) has great potential for secondary use by health systems and researchers. However, collected primarily for efficient health care, EHR data may not equitably represent local regions and populations, impacting the generalizability of insights learned from it. We assessed the geospatial representativeness of regions in a large health system EHR data using a spatial analysis workflow, which provides a data-driven way to quantify geospatial representation and identify adequately represented regions. We applied the workflow to investigate geospatial patterns of overweight/obesity and depression patients to find regional \\\"hotspots\\\" for potential targeted interventions. Our findings show the presence of geospatial bias in EHR and demonstrate the workflow to identify spatial clusters after adjusting for bias due to the geospatial representativeness. This work highlights the importance of evaluating geospatial representativeness in RWD to guide targeted deployment of limited healthcare resources and generate equitable real-world evidence.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283143/pdf/2310.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

像电子健康记录(EHR)这样的真实世界数据(RWD)在卫生系统和研究人员的二次使用中具有巨大的潜力。然而,主要为高效医疗而收集的EHR数据可能无法公平地代表当地地区和人口,影响了从中获得的见解的可推广性。我们使用空间分析工作流程评估了大型卫生系统EHR数据中各地区的地理空间代表性,其提供了一种数据驱动的方式来量化地理空间表示并识别充分表示的区域。我们应用该工作流程调查超重/肥胖和抑郁症患者的地理空间模式,以找到潜在靶向干预的区域“热点”。我们的研究结果表明了EHR中存在地理空间偏差,并展示了在调整了由于地理空间代表性而产生的偏差后识别空间集群的工作流程。这项工作强调了评估RWD中地理空间代表性的重要性,以指导有限医疗资源的有针对性部署,并产生公平的现实世界证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geospatial divide in real-world EHR data: Analytical workflow to assess regional biases and potential impact on health equity.

Real-world data (RWD) like electronic health records (EHR) has great potential for secondary use by health systems and researchers. However, collected primarily for efficient health care, EHR data may not equitably represent local regions and populations, impacting the generalizability of insights learned from it. We assessed the geospatial representativeness of regions in a large health system EHR data using a spatial analysis workflow, which provides a data-driven way to quantify geospatial representation and identify adequately represented regions. We applied the workflow to investigate geospatial patterns of overweight/obesity and depression patients to find regional "hotspots" for potential targeted interventions. Our findings show the presence of geospatial bias in EHR and demonstrate the workflow to identify spatial clusters after adjusting for bias due to the geospatial representativeness. This work highlights the importance of evaluating geospatial representativeness in RWD to guide targeted deployment of limited healthcare resources and generate equitable real-world evidence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of a Machine Learning Risk Prediction Model for Postpartum Depression in the Electronic Health Records. Clarifying Chronic Obstructive Pulmonary Disease Genetic Associations Observed in Biobanks via Mediation Analysis of Smoking. CLASSify: A Web-Based Tool for Machine Learning. Clinical Note Structural Knowledge Improves Word Sense Disambiguation. Cluster Analysis of Cortical Amyloid Burden for Identifying Imaging-driven Subtypes in Mild Cognitive Impairment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1