Serena Jinchen Xie, Flavia P Kapos, Stephen J Mooney, Sean Mooney, Kari A Stephens, Cynthia Chen, Andrea L Hartzler, Abhishek Pratap
{"title":"现实世界电子病历数据的地理空间差异:评估区域偏见和对卫生公平的潜在影响的分析工作流程。","authors":"Serena Jinchen Xie, Flavia P Kapos, Stephen J Mooney, Sean Mooney, Kari A Stephens, Cynthia Chen, Andrea L Hartzler, Abhishek Pratap","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Real-world data (RWD) like electronic health records (EHR) has great potential for secondary use by health systems and researchers. However, collected primarily for efficient health care, EHR data may not equitably represent local regions and populations, impacting the generalizability of insights learned from it. We assessed the geospatial representativeness of regions in a large health system EHR data using a spatial analysis workflow, which provides a data-driven way to quantify geospatial representation and identify adequately represented regions. We applied the workflow to investigate geospatial patterns of overweight/obesity and depression patients to find regional \"hotspots\" for potential targeted interventions. Our findings show the presence of geospatial bias in EHR and demonstrate the workflow to identify spatial clusters after adjusting for bias due to the geospatial representativeness. This work highlights the importance of evaluating geospatial representativeness in RWD to guide targeted deployment of limited healthcare resources and generate equitable real-world evidence.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283143/pdf/2310.pdf","citationCount":"0","resultStr":"{\"title\":\"Geospatial divide in real-world EHR data: Analytical workflow to assess regional biases and potential impact on health equity.\",\"authors\":\"Serena Jinchen Xie, Flavia P Kapos, Stephen J Mooney, Sean Mooney, Kari A Stephens, Cynthia Chen, Andrea L Hartzler, Abhishek Pratap\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Real-world data (RWD) like electronic health records (EHR) has great potential for secondary use by health systems and researchers. However, collected primarily for efficient health care, EHR data may not equitably represent local regions and populations, impacting the generalizability of insights learned from it. We assessed the geospatial representativeness of regions in a large health system EHR data using a spatial analysis workflow, which provides a data-driven way to quantify geospatial representation and identify adequately represented regions. We applied the workflow to investigate geospatial patterns of overweight/obesity and depression patients to find regional \\\"hotspots\\\" for potential targeted interventions. Our findings show the presence of geospatial bias in EHR and demonstrate the workflow to identify spatial clusters after adjusting for bias due to the geospatial representativeness. This work highlights the importance of evaluating geospatial representativeness in RWD to guide targeted deployment of limited healthcare resources and generate equitable real-world evidence.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283143/pdf/2310.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Geospatial divide in real-world EHR data: Analytical workflow to assess regional biases and potential impact on health equity.
Real-world data (RWD) like electronic health records (EHR) has great potential for secondary use by health systems and researchers. However, collected primarily for efficient health care, EHR data may not equitably represent local regions and populations, impacting the generalizability of insights learned from it. We assessed the geospatial representativeness of regions in a large health system EHR data using a spatial analysis workflow, which provides a data-driven way to quantify geospatial representation and identify adequately represented regions. We applied the workflow to investigate geospatial patterns of overweight/obesity and depression patients to find regional "hotspots" for potential targeted interventions. Our findings show the presence of geospatial bias in EHR and demonstrate the workflow to identify spatial clusters after adjusting for bias due to the geospatial representativeness. This work highlights the importance of evaluating geospatial representativeness in RWD to guide targeted deployment of limited healthcare resources and generate equitable real-world evidence.