电子健康记录注册时间表。

Shiyi Jiang, Rungang Han, Krishnendu Chakrabarty, David Page, William W Stead, Anru R Zhang
{"title":"电子健康记录注册时间表。","authors":"Shiyi Jiang, Rungang Han, Krishnendu Chakrabarty, David Page, William W Stead, Anru R Zhang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic Health Record (EHR) data are captured over time as patients receive care. Accordingly, variations among patients, such as when a patient presents for care during the course of a disease, introduce bias into standard longitudinal EHR data analysis methods. We, therefore, aim to provide an alignment method that reduces this bias. We structure this task as a registration problem. While limited prior research on longitudinal EHR data considered registration, we propose a robust registration method to provide better data alignment by estimating the optimum time shift at each time point. We validate the proposed method for mortality prediction. We utilize a Recurrent Neural Network (RNN), time-varying Cox regression model, and Logistic Regression (LR) for mortality prediction. Results suggest our proposed registration method enhances mortality prediction with at least a 1-2% increase in major evaluation metrics utilized.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283114/pdf/2036.pdf","citationCount":"0","resultStr":"{\"title\":\"Timeline Registration for Electronic Health Records.\",\"authors\":\"Shiyi Jiang, Rungang Han, Krishnendu Chakrabarty, David Page, William W Stead, Anru R Zhang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electronic Health Record (EHR) data are captured over time as patients receive care. Accordingly, variations among patients, such as when a patient presents for care during the course of a disease, introduce bias into standard longitudinal EHR data analysis methods. We, therefore, aim to provide an alignment method that reduces this bias. We structure this task as a registration problem. While limited prior research on longitudinal EHR data considered registration, we propose a robust registration method to provide better data alignment by estimating the optimum time shift at each time point. We validate the proposed method for mortality prediction. We utilize a Recurrent Neural Network (RNN), time-varying Cox regression model, and Logistic Regression (LR) for mortality prediction. Results suggest our proposed registration method enhances mortality prediction with at least a 1-2% increase in major evaluation metrics utilized.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283114/pdf/2036.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子健康记录(EHR)数据是在患者接受治疗的过程中不断采集的。因此,患者之间的差异,如患者在疾病过程中何时就诊,会给标准的纵向电子病历数据分析方法带来偏差。因此,我们的目标是提供一种能减少这种偏差的对齐方法。我们将这一任务结构化为一个登记问题。虽然之前关于纵向电子病历数据的研究很少考虑登记问题,但我们提出了一种稳健的登记方法,通过估计每个时间点的最佳时间偏移来提供更好的数据配准。我们在死亡率预测中验证了所提出的方法。我们利用循环神经网络(RNN)、时变考克斯回归模型和逻辑回归(LR)进行死亡率预测。结果表明,我们提出的登记方法提高了死亡率预测能力,在主要评估指标上至少提高了 1-2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Timeline Registration for Electronic Health Records.

Electronic Health Record (EHR) data are captured over time as patients receive care. Accordingly, variations among patients, such as when a patient presents for care during the course of a disease, introduce bias into standard longitudinal EHR data analysis methods. We, therefore, aim to provide an alignment method that reduces this bias. We structure this task as a registration problem. While limited prior research on longitudinal EHR data considered registration, we propose a robust registration method to provide better data alignment by estimating the optimum time shift at each time point. We validate the proposed method for mortality prediction. We utilize a Recurrent Neural Network (RNN), time-varying Cox regression model, and Logistic Regression (LR) for mortality prediction. Results suggest our proposed registration method enhances mortality prediction with at least a 1-2% increase in major evaluation metrics utilized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of a Machine Learning Risk Prediction Model for Postpartum Depression in the Electronic Health Records. Clarifying Chronic Obstructive Pulmonary Disease Genetic Associations Observed in Biobanks via Mediation Analysis of Smoking. CLASSify: A Web-Based Tool for Machine Learning. Clinical Note Structural Knowledge Improves Word Sense Disambiguation. Cluster Analysis of Cortical Amyloid Burden for Identifying Imaging-driven Subtypes in Mild Cognitive Impairment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1