{"title":"研究电子健康记录中全氟/多氟烷基物质(PFAS)暴露的三种分类方法及其潜在的偏差。","authors":"Lena M Davidson, Mary Regina Boland","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Per-/poly-fluoroalkyl substances (PFAS) are a group of manmade compounds with known human toxicity and evidence of contamination in drinking water throughout the US. We augmented our electronic health record data with geospatial information to classify PFAS exposure for our patients living in New Jersey. We explored the utility of three different methods for classifying PFAS exposure that are popularly used in the literature, resulting in different boundary types: public water supplier service area boundary, municipality, and ZIP code. We also explored the intersection of the three boundaries. To study the potential for bias, we investigated known PFAS exposure-disease associations, specifically hypertension, thyroid disease and parathyroid disease. We found that both the significance of the associations and the effect size varied by the method for classifying PFAS exposure. This has important implications in knowledge discovery and also environmental justice as across cohorts, we found a larger proportion of Black/African-American patients PFAS-exposed.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283112/pdf/2417.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigating Three Classification Methods for Per/Poly-Fluoroalkyl Substance (PFAS) Exposure from Electronic Health Records And Potential for Bias.\",\"authors\":\"Lena M Davidson, Mary Regina Boland\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Per-/poly-fluoroalkyl substances (PFAS) are a group of manmade compounds with known human toxicity and evidence of contamination in drinking water throughout the US. We augmented our electronic health record data with geospatial information to classify PFAS exposure for our patients living in New Jersey. We explored the utility of three different methods for classifying PFAS exposure that are popularly used in the literature, resulting in different boundary types: public water supplier service area boundary, municipality, and ZIP code. We also explored the intersection of the three boundaries. To study the potential for bias, we investigated known PFAS exposure-disease associations, specifically hypertension, thyroid disease and parathyroid disease. We found that both the significance of the associations and the effect size varied by the method for classifying PFAS exposure. This has important implications in knowledge discovery and also environmental justice as across cohorts, we found a larger proportion of Black/African-American patients PFAS-exposed.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283112/pdf/2417.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Investigating Three Classification Methods for Per/Poly-Fluoroalkyl Substance (PFAS) Exposure from Electronic Health Records And Potential for Bias.
Per-/poly-fluoroalkyl substances (PFAS) are a group of manmade compounds with known human toxicity and evidence of contamination in drinking water throughout the US. We augmented our electronic health record data with geospatial information to classify PFAS exposure for our patients living in New Jersey. We explored the utility of three different methods for classifying PFAS exposure that are popularly used in the literature, resulting in different boundary types: public water supplier service area boundary, municipality, and ZIP code. We also explored the intersection of the three boundaries. To study the potential for bias, we investigated known PFAS exposure-disease associations, specifically hypertension, thyroid disease and parathyroid disease. We found that both the significance of the associations and the effect size varied by the method for classifying PFAS exposure. This has important implications in knowledge discovery and also environmental justice as across cohorts, we found a larger proportion of Black/African-American patients PFAS-exposed.