生物正交受激拉曼散射成像揭示了衰老过程中果蝇大脑中的脂质代谢动力学。

IF 2 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY GEN biotechnology Pub Date : 2023-06-01 Epub Date: 2023-06-19 DOI:10.1089/genbio.2023.0017
Yajuan Li, Phyllis Chang, Shriya Sankaran, Hongje Jang, Yuhang Nie, Audrey Zeng, Sahran Hussain, Jane Y Wu, Xu Chen, Lingyan Shi
{"title":"生物正交受激拉曼散射成像揭示了衰老过程中果蝇大脑中的脂质代谢动力学。","authors":"Yajuan Li, Phyllis Chang, Shriya Sankaran, Hongje Jang, Yuhang Nie, Audrey Zeng, Sahran Hussain, Jane Y Wu, Xu Chen, Lingyan Shi","doi":"10.1089/genbio.2023.0017","DOIUrl":null,"url":null,"abstract":"<p><p>Studies have shown that brain lipid metabolism is associated with biological aging and influenced by dietary and genetic manipulations; however, the underlying mechanisms are elusive. High-resolution imaging techniques propose a novel and potent approach to understanding lipid metabolic dynamics <i>in situ</i>. Applying deuterium water (D<sub>2</sub>O) probing with stimulated Raman scattering (DO-SRS) microscopy, we revealed that lipid metabolic activity in <i>Drosophila</i> brain decreased with aging in a sex-dependent manner. Female flies showed an earlier occurrence of lipid turnover decrease than males. Dietary restriction (DR) and downregulation of insulin/IGF-1 signaling (IIS) pathway, two scenarios for lifespan extension, led to significant enhancements of brain lipid turnover in old flies. Combining SRS imaging with deuterated bioorthogonal probes (deuterated glucose and deuterated acetate), we discovered that, under DR treatment and downregulation of IIS pathway, brain metabolism shifted to use acetate as a major carbon source for lipid synthesis. For the first time, our study directly visualizes and quantifies spatiotemporal alterations of lipid turnover in <i>Drosophila</i> brain at the single organelle (lipid droplet) level. Our study not only demonstrates a new approach for studying brain lipid metabolic activity <i>in situ</i> but also illuminates the interconnection of aging, dietary, and genetic manipulations on brain lipid metabolic regulation.</p>","PeriodicalId":73134,"journal":{"name":"GEN biotechnology","volume":"2 3","pages":"247-261"},"PeriodicalIF":2.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286263/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bioorthogonal Stimulated Raman Scattering Imaging Uncovers Lipid Metabolic Dynamics in <i>Drosophila</i> Brain During Aging.\",\"authors\":\"Yajuan Li, Phyllis Chang, Shriya Sankaran, Hongje Jang, Yuhang Nie, Audrey Zeng, Sahran Hussain, Jane Y Wu, Xu Chen, Lingyan Shi\",\"doi\":\"10.1089/genbio.2023.0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Studies have shown that brain lipid metabolism is associated with biological aging and influenced by dietary and genetic manipulations; however, the underlying mechanisms are elusive. High-resolution imaging techniques propose a novel and potent approach to understanding lipid metabolic dynamics <i>in situ</i>. Applying deuterium water (D<sub>2</sub>O) probing with stimulated Raman scattering (DO-SRS) microscopy, we revealed that lipid metabolic activity in <i>Drosophila</i> brain decreased with aging in a sex-dependent manner. Female flies showed an earlier occurrence of lipid turnover decrease than males. Dietary restriction (DR) and downregulation of insulin/IGF-1 signaling (IIS) pathway, two scenarios for lifespan extension, led to significant enhancements of brain lipid turnover in old flies. Combining SRS imaging with deuterated bioorthogonal probes (deuterated glucose and deuterated acetate), we discovered that, under DR treatment and downregulation of IIS pathway, brain metabolism shifted to use acetate as a major carbon source for lipid synthesis. For the first time, our study directly visualizes and quantifies spatiotemporal alterations of lipid turnover in <i>Drosophila</i> brain at the single organelle (lipid droplet) level. Our study not only demonstrates a new approach for studying brain lipid metabolic activity <i>in situ</i> but also illuminates the interconnection of aging, dietary, and genetic manipulations on brain lipid metabolic regulation.</p>\",\"PeriodicalId\":73134,\"journal\":{\"name\":\"GEN biotechnology\",\"volume\":\"2 3\",\"pages\":\"247-261\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286263/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GEN biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/genbio.2023.0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GEN biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/genbio.2023.0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究表明,大脑脂质代谢与生物衰老有关,并受到饮食和遗传操作的影响;然而,其潜在机制尚不明确。高分辨率成像技术为原位理解脂质代谢动力学提供了一种新的有效方法。应用氘水(D2O)探测和受激拉曼散射(DO-SRS)显微镜,我们发现果蝇大脑中的脂质代谢活性随着年龄的增长而以性别依赖的方式降低。雌蝇比雄蝇更早出现脂质周转减少。饮食限制(DR)和胰岛素/IGF-1信号通路(IIS)的下调是延长寿命的两种情况,导致老苍蝇大脑脂质代谢显著增强。将SRS成像与氘化生物正交探针(氘化葡萄糖和氘化乙酸盐)相结合,我们发现,在DR治疗和IIS途径下调的情况下,大脑代谢转向使用乙酸盐作为脂质合成的主要碳源。我们的研究首次在单个细胞器(脂滴)水平上直接可视化和量化了果蝇大脑脂质周转的时空变化。我们的研究不仅展示了一种原位研究脑脂质代谢活性的新方法,而且阐明了衰老、饮食和基因操作对脑脂质代谢调节的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bioorthogonal Stimulated Raman Scattering Imaging Uncovers Lipid Metabolic Dynamics in Drosophila Brain During Aging.

Studies have shown that brain lipid metabolism is associated with biological aging and influenced by dietary and genetic manipulations; however, the underlying mechanisms are elusive. High-resolution imaging techniques propose a novel and potent approach to understanding lipid metabolic dynamics in situ. Applying deuterium water (D2O) probing with stimulated Raman scattering (DO-SRS) microscopy, we revealed that lipid metabolic activity in Drosophila brain decreased with aging in a sex-dependent manner. Female flies showed an earlier occurrence of lipid turnover decrease than males. Dietary restriction (DR) and downregulation of insulin/IGF-1 signaling (IIS) pathway, two scenarios for lifespan extension, led to significant enhancements of brain lipid turnover in old flies. Combining SRS imaging with deuterated bioorthogonal probes (deuterated glucose and deuterated acetate), we discovered that, under DR treatment and downregulation of IIS pathway, brain metabolism shifted to use acetate as a major carbon source for lipid synthesis. For the first time, our study directly visualizes and quantifies spatiotemporal alterations of lipid turnover in Drosophila brain at the single organelle (lipid droplet) level. Our study not only demonstrates a new approach for studying brain lipid metabolic activity in situ but also illuminates the interconnection of aging, dietary, and genetic manipulations on brain lipid metabolic regulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Fluorescent Sex-Sorting Technique for Insects with the Demonstration in Drosophila melanogaster. The Physical View of the Origin of Genetic Engineering Landmark CRISPR Approvals and the Rise of Epigenome Editing Drug Pricing Versus Precision Medicine Revelry and Reminiscence: 50 Years of Recombinant DNA at Cold Spring Harbor Laboratory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1