高维生存数据的分位数前向回归。

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Lifetime Data Analysis Pub Date : 2023-10-01 Epub Date: 2023-07-02 DOI:10.1007/s10985-023-09603-w
Eun Ryung Lee, Seyoung Park, Sang Kyu Lee, Hyokyoung G Hong
{"title":"高维生存数据的分位数前向回归。","authors":"Eun Ryung Lee,&nbsp;Seyoung Park,&nbsp;Sang Kyu Lee,&nbsp;Hyokyoung G Hong","doi":"10.1007/s10985-023-09603-w","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the urgent need for an effective prediction model tailored to individual interests, existing models have mainly been developed for the mean outcome, targeting average people. Additionally, the direction and magnitude of covariates' effects on the mean outcome may not hold across different quantiles of the outcome distribution. To accommodate the heterogeneous characteristics of covariates and provide a flexible risk model, we propose a quantile forward regression model for high-dimensional survival data. Our method selects variables by maximizing the likelihood of the asymmetric Laplace distribution (ALD) and derives the final model based on the extended Bayesian Information Criterion (EBIC). We demonstrate that the proposed method enjoys a sure screening property and selection consistency. We apply it to the national health survey dataset to show the advantages of a quantile-specific prediction model. Finally, we discuss potential extensions of our approach, including the nonlinear model and the globally concerned quantile regression coefficients model.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantile forward regression for high-dimensional survival data.\",\"authors\":\"Eun Ryung Lee,&nbsp;Seyoung Park,&nbsp;Sang Kyu Lee,&nbsp;Hyokyoung G Hong\",\"doi\":\"10.1007/s10985-023-09603-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the urgent need for an effective prediction model tailored to individual interests, existing models have mainly been developed for the mean outcome, targeting average people. Additionally, the direction and magnitude of covariates' effects on the mean outcome may not hold across different quantiles of the outcome distribution. To accommodate the heterogeneous characteristics of covariates and provide a flexible risk model, we propose a quantile forward regression model for high-dimensional survival data. Our method selects variables by maximizing the likelihood of the asymmetric Laplace distribution (ALD) and derives the final model based on the extended Bayesian Information Criterion (EBIC). We demonstrate that the proposed method enjoys a sure screening property and selection consistency. We apply it to the national health survey dataset to show the advantages of a quantile-specific prediction model. Finally, we discuss potential extensions of our approach, including the nonlinear model and the globally concerned quantile regression coefficients model.</p>\",\"PeriodicalId\":49908,\"journal\":{\"name\":\"Lifetime Data Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lifetime Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-023-09603-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-023-09603-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

尽管迫切需要一个适合个人兴趣的有效预测模型,但现有的模型主要是针对平均结果开发的,针对的是普通人。此外,协变量对平均结果的影响的方向和幅度可能不适用于结果分布的不同分位数。为了适应协变量的异质性特征并提供一个灵活的风险模型,我们提出了一个高维生存数据的分位数前向回归模型。我们的方法通过最大化不对称拉普拉斯分布(ALD)的可能性来选择变量,并基于扩展贝叶斯信息准则(EBIC)导出最终模型。我们证明了所提出的方法具有一定的筛选性质和选择的一致性。我们将其应用于国家健康调查数据集,以显示分位数特定预测模型的优势。最后,我们讨论了我们方法的潜在扩展,包括非线性模型和全局关注的分位数回归系数模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantile forward regression for high-dimensional survival data.

Despite the urgent need for an effective prediction model tailored to individual interests, existing models have mainly been developed for the mean outcome, targeting average people. Additionally, the direction and magnitude of covariates' effects on the mean outcome may not hold across different quantiles of the outcome distribution. To accommodate the heterogeneous characteristics of covariates and provide a flexible risk model, we propose a quantile forward regression model for high-dimensional survival data. Our method selects variables by maximizing the likelihood of the asymmetric Laplace distribution (ALD) and derives the final model based on the extended Bayesian Information Criterion (EBIC). We demonstrate that the proposed method enjoys a sure screening property and selection consistency. We apply it to the national health survey dataset to show the advantages of a quantile-specific prediction model. Finally, we discuss potential extensions of our approach, including the nonlinear model and the globally concerned quantile regression coefficients model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
期刊最新文献
Volume under the ROC surface for high-dimensional independent screening with ordinal competing risk outcomes. Improving marginal hazard ratio estimation using quadratic inference functions. Quantile forward regression for high-dimensional survival data. Cox (1972): recollections and reflections. Bayesian semiparametric joint model of multivariate longitudinal and survival data with dependent censoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1