{"title":"基于多重crispr的病原体核酸检测方法","authors":"Caitlin H. Lamb, Brian Kang, Cameron Myhrvold","doi":"10.1016/j.cobme.2023.100471","DOIUrl":null,"url":null,"abstract":"<div><p>Bacterial and viral pathogens are devastating to human health and well-being. In many regions, dozens of pathogen species and variants co-circulate. Thus, it is important to detect many different species and variants of pathogens in a given sample through multiplexed detection methods. CRISPR-based nucleic acid detection has shown to be a promising step towards an easy-to-use, sensitive, specific, and high-throughput method to detect nucleic acids from DNA and RNA viruses and bacteria. Here, we review the current state of multiplexed nucleic acid detection methods with a focus on CRISPR-based methods. We also look toward the future of multiplexed point-of-care diagnostics.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"27 ","pages":"Article 100471"},"PeriodicalIF":4.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10310064/pdf/","citationCount":"1","resultStr":"{\"title\":\"Multiplexed CRISPR-based methods for pathogen nucleic acid detection\",\"authors\":\"Caitlin H. Lamb, Brian Kang, Cameron Myhrvold\",\"doi\":\"10.1016/j.cobme.2023.100471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bacterial and viral pathogens are devastating to human health and well-being. In many regions, dozens of pathogen species and variants co-circulate. Thus, it is important to detect many different species and variants of pathogens in a given sample through multiplexed detection methods. CRISPR-based nucleic acid detection has shown to be a promising step towards an easy-to-use, sensitive, specific, and high-throughput method to detect nucleic acids from DNA and RNA viruses and bacteria. Here, we review the current state of multiplexed nucleic acid detection methods with a focus on CRISPR-based methods. We also look toward the future of multiplexed point-of-care diagnostics.</p></div>\",\"PeriodicalId\":36748,\"journal\":{\"name\":\"Current Opinion in Biomedical Engineering\",\"volume\":\"27 \",\"pages\":\"Article 100471\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10310064/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468451123000272\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451123000272","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Multiplexed CRISPR-based methods for pathogen nucleic acid detection
Bacterial and viral pathogens are devastating to human health and well-being. In many regions, dozens of pathogen species and variants co-circulate. Thus, it is important to detect many different species and variants of pathogens in a given sample through multiplexed detection methods. CRISPR-based nucleic acid detection has shown to be a promising step towards an easy-to-use, sensitive, specific, and high-throughput method to detect nucleic acids from DNA and RNA viruses and bacteria. Here, we review the current state of multiplexed nucleic acid detection methods with a focus on CRISPR-based methods. We also look toward the future of multiplexed point-of-care diagnostics.