Eva Paddenberg, Raphael Heiß, Tobias Grünbaum, Peter Proff, Christian Kirschneck
{"title":"一个数学-几何模型的验证,以计算个人前弓的长度。","authors":"Eva Paddenberg, Raphael Heiß, Tobias Grünbaum, Peter Proff, Christian Kirschneck","doi":"10.1007/s00056-023-00482-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>For resolving anterior dental crowding or spacing, it is of key interest in personalised orthodontic diagnostics and treatment planning to predict the extent of space gained or lost in the anterior dental arch by changing incisor inclination or position. To facilitate the determination of anterior arch length (AL) and to predict its alterations following tooth movements, a mathematical-geometrical model, based on a third-degree parabola, was established. The aim of this study was to validate this model and assess its diagnostic precision.</p><p><strong>Methods: </strong>This retrospective diagnostic study evaluated 50 randomly chosen dental casts taken before (T0) and after (T1) orthodontic treatment with fixed appliances. Plaster models were digitally photographed, allowing two-dimensional digital measurements of arch width, depth and length. A computer programme based on the mathematical-geometrical model to be validated was created to calculate AL for any given arch width and depth. Mean differences and correlation coefficients as well as Bland-Altman plots were used to compare the measured and the calculated (predicted) AL, evaluating the precision of the model.</p><p><strong>Results: </strong>Inter- and intrarater reliability tests showed reliable measurements of arch width, depth and length. Measured and calculated (predicted) AL revealed high concordance according to concordance correlation coefficient (CCC), intraclass correlation coefficient (ICC), and Bland-Altman analyses and negligible differences between the mean values.</p><p><strong>Conclusions: </strong>The mathematical-geometrical model calculated anterior AL without significant difference to the measured AL, indicating its validity. The model can thus be used clinically for predicting alterations of AL following therapeutic changes of incisor inclination/position.</p>","PeriodicalId":54776,"journal":{"name":"Journal of Orofacial Orthopedics-Fortschritte Der Kieferorthopadie","volume":" ","pages":"108-118"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861399/pdf/","citationCount":"0","resultStr":"{\"title\":\"Validation of a mathematical-geometrical model to calculate the length of an individual anterior arch.\",\"authors\":\"Eva Paddenberg, Raphael Heiß, Tobias Grünbaum, Peter Proff, Christian Kirschneck\",\"doi\":\"10.1007/s00056-023-00482-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>For resolving anterior dental crowding or spacing, it is of key interest in personalised orthodontic diagnostics and treatment planning to predict the extent of space gained or lost in the anterior dental arch by changing incisor inclination or position. To facilitate the determination of anterior arch length (AL) and to predict its alterations following tooth movements, a mathematical-geometrical model, based on a third-degree parabola, was established. The aim of this study was to validate this model and assess its diagnostic precision.</p><p><strong>Methods: </strong>This retrospective diagnostic study evaluated 50 randomly chosen dental casts taken before (T0) and after (T1) orthodontic treatment with fixed appliances. Plaster models were digitally photographed, allowing two-dimensional digital measurements of arch width, depth and length. A computer programme based on the mathematical-geometrical model to be validated was created to calculate AL for any given arch width and depth. Mean differences and correlation coefficients as well as Bland-Altman plots were used to compare the measured and the calculated (predicted) AL, evaluating the precision of the model.</p><p><strong>Results: </strong>Inter- and intrarater reliability tests showed reliable measurements of arch width, depth and length. Measured and calculated (predicted) AL revealed high concordance according to concordance correlation coefficient (CCC), intraclass correlation coefficient (ICC), and Bland-Altman analyses and negligible differences between the mean values.</p><p><strong>Conclusions: </strong>The mathematical-geometrical model calculated anterior AL without significant difference to the measured AL, indicating its validity. The model can thus be used clinically for predicting alterations of AL following therapeutic changes of incisor inclination/position.</p>\",\"PeriodicalId\":54776,\"journal\":{\"name\":\"Journal of Orofacial Orthopedics-Fortschritte Der Kieferorthopadie\",\"volume\":\" \",\"pages\":\"108-118\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861399/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Orofacial Orthopedics-Fortschritte Der Kieferorthopadie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00056-023-00482-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orofacial Orthopedics-Fortschritte Der Kieferorthopadie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00056-023-00482-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Validation of a mathematical-geometrical model to calculate the length of an individual anterior arch.
Purpose: For resolving anterior dental crowding or spacing, it is of key interest in personalised orthodontic diagnostics and treatment planning to predict the extent of space gained or lost in the anterior dental arch by changing incisor inclination or position. To facilitate the determination of anterior arch length (AL) and to predict its alterations following tooth movements, a mathematical-geometrical model, based on a third-degree parabola, was established. The aim of this study was to validate this model and assess its diagnostic precision.
Methods: This retrospective diagnostic study evaluated 50 randomly chosen dental casts taken before (T0) and after (T1) orthodontic treatment with fixed appliances. Plaster models were digitally photographed, allowing two-dimensional digital measurements of arch width, depth and length. A computer programme based on the mathematical-geometrical model to be validated was created to calculate AL for any given arch width and depth. Mean differences and correlation coefficients as well as Bland-Altman plots were used to compare the measured and the calculated (predicted) AL, evaluating the precision of the model.
Results: Inter- and intrarater reliability tests showed reliable measurements of arch width, depth and length. Measured and calculated (predicted) AL revealed high concordance according to concordance correlation coefficient (CCC), intraclass correlation coefficient (ICC), and Bland-Altman analyses and negligible differences between the mean values.
Conclusions: The mathematical-geometrical model calculated anterior AL without significant difference to the measured AL, indicating its validity. The model can thus be used clinically for predicting alterations of AL following therapeutic changes of incisor inclination/position.
期刊介绍:
The Journal of Orofacial Orthopedics provides orthodontists and dentists who are also actively interested in orthodontics, whether in university clinics or private practice, with highly authoritative and up-to-date information based on experimental and clinical research. The journal is one of the leading publications for the promulgation of the results of original work both in the areas of scientific and clinical orthodontics and related areas. All articles undergo peer review before publication. The German Society of Orthodontics (DGKFO) also publishes in the journal important communications, statements and announcements.