{"title":"同相扭曲双分子层的晶体学:巧合、联合晶格和空间群。","authors":"Denis Gratias, Marianne Quiquandon","doi":"10.1107/S2053273323003662","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the basic tools used to describe the global symmetry of so-called bilayer structures obtained when two differently oriented crystalline monoatomic layers of the same structure are superimposed and displaced with respect to each other. The 2D nature of the layers leads to the use of complex numbers that allows for simple explicit analytical expressions of the symmetry properties involved in standard bicrystallography [Gratias & Portier (1982). J. Phys. Colloq. 43, C6-15-C6-24; Pond & Vlachavas (1983). Proc. R. Soc. Lond. Ser. A, 386, 95-143]. The focus here is on the twist rotations such that the superimposition of the two layers generates a coincidence lattice. The set of such coincidence rotations plotted as a function of the lengths of their coincidence lattice unit-cell nodes exhibits remarkable arithmetic properties. The second part of the paper is devoted to determination of the space groups of the bilayers as a function of the rigid-body translation associated with the coincidence rotation. These general results are exemplified with a detailed study of graphene bilayers, showing that the possible symmetries of graphene bilayers with a coincidence lattice, whatever the rotation and the rigid-body translation, are distributed in only six distinct types of space groups. The appendix discusses some generalized cases of heterophase bilayers with coincidence lattices due to specific lattice constant ratios, and mechanical deformation by elongation and shear of a layer on top of an undeformed one.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":"79 Pt 4","pages":"301-317"},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10317138/pdf/","citationCount":"0","resultStr":"{\"title\":\"Crystallography of homophase twisted bilayers: coincidence, union lattices and space groups.\",\"authors\":\"Denis Gratias, Marianne Quiquandon\",\"doi\":\"10.1107/S2053273323003662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents the basic tools used to describe the global symmetry of so-called bilayer structures obtained when two differently oriented crystalline monoatomic layers of the same structure are superimposed and displaced with respect to each other. The 2D nature of the layers leads to the use of complex numbers that allows for simple explicit analytical expressions of the symmetry properties involved in standard bicrystallography [Gratias & Portier (1982). J. Phys. Colloq. 43, C6-15-C6-24; Pond & Vlachavas (1983). Proc. R. Soc. Lond. Ser. A, 386, 95-143]. The focus here is on the twist rotations such that the superimposition of the two layers generates a coincidence lattice. The set of such coincidence rotations plotted as a function of the lengths of their coincidence lattice unit-cell nodes exhibits remarkable arithmetic properties. The second part of the paper is devoted to determination of the space groups of the bilayers as a function of the rigid-body translation associated with the coincidence rotation. These general results are exemplified with a detailed study of graphene bilayers, showing that the possible symmetries of graphene bilayers with a coincidence lattice, whatever the rotation and the rigid-body translation, are distributed in only six distinct types of space groups. The appendix discusses some generalized cases of heterophase bilayers with coincidence lattices due to specific lattice constant ratios, and mechanical deformation by elongation and shear of a layer on top of an undeformed one.</p>\",\"PeriodicalId\":106,\"journal\":{\"name\":\"Acta Crystallographica Section A: Foundations and Advances\",\"volume\":\"79 Pt 4\",\"pages\":\"301-317\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10317138/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section A: Foundations and Advances\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1107/S2053273323003662\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A: Foundations and Advances","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1107/S2053273323003662","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Crystallography of homophase twisted bilayers: coincidence, union lattices and space groups.
This paper presents the basic tools used to describe the global symmetry of so-called bilayer structures obtained when two differently oriented crystalline monoatomic layers of the same structure are superimposed and displaced with respect to each other. The 2D nature of the layers leads to the use of complex numbers that allows for simple explicit analytical expressions of the symmetry properties involved in standard bicrystallography [Gratias & Portier (1982). J. Phys. Colloq. 43, C6-15-C6-24; Pond & Vlachavas (1983). Proc. R. Soc. Lond. Ser. A, 386, 95-143]. The focus here is on the twist rotations such that the superimposition of the two layers generates a coincidence lattice. The set of such coincidence rotations plotted as a function of the lengths of their coincidence lattice unit-cell nodes exhibits remarkable arithmetic properties. The second part of the paper is devoted to determination of the space groups of the bilayers as a function of the rigid-body translation associated with the coincidence rotation. These general results are exemplified with a detailed study of graphene bilayers, showing that the possible symmetries of graphene bilayers with a coincidence lattice, whatever the rotation and the rigid-body translation, are distributed in only six distinct types of space groups. The appendix discusses some generalized cases of heterophase bilayers with coincidence lattices due to specific lattice constant ratios, and mechanical deformation by elongation and shear of a layer on top of an undeformed one.
期刊介绍:
Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials.
The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial.
The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.