OOCDB:一个全面、系统、实时的片上组织数据库。

IF 11.5 2区 生物学 Q1 GENETICS & HEREDITY Genomics, Proteomics & Bioinformatics Pub Date : 2023-04-01 DOI:10.1016/j.gpb.2023.01.001
Jian Li , Weicheng Liang , Zaozao Chen , Xingyu Li , Pan Gu , Anna Liu , Pin Chen , Qiwei Li , Xueyin Mei , Jing Yang , Jun Liu , Lincao Jiang , Zhongze Gu
{"title":"OOCDB:一个全面、系统、实时的片上组织数据库。","authors":"Jian Li ,&nbsp;Weicheng Liang ,&nbsp;Zaozao Chen ,&nbsp;Xingyu Li ,&nbsp;Pan Gu ,&nbsp;Anna Liu ,&nbsp;Pin Chen ,&nbsp;Qiwei Li ,&nbsp;Xueyin Mei ,&nbsp;Jing Yang ,&nbsp;Jun Liu ,&nbsp;Lincao Jiang ,&nbsp;Zhongze Gu","doi":"10.1016/j.gpb.2023.01.001","DOIUrl":null,"url":null,"abstract":"<div><p><strong>Organs-on-a-chip</strong> is a microfluidic microphysiological system that uses microfluidic technology to analyze the structure and function of living human cells at the tissue and <strong>organ</strong> levels <em>in vitro</em>. Organs-on-a-chip technology, as opposed to traditional two-dimensional cell culture and animal models, can more closely simulate pathologic and toxicologic interactions between different organs or tissues and reflect the collaborative response of multiple organs to drugs. Despite the fact that many organs-on-a-chip-related data have been published, none of the current <strong>databases</strong> have all of the following functions: searching, downloading, as well as analyzing data and results from the literature on organs-on-a-chip. Therefore, we created an organs-on-a-chip database (OOCDB) as a platform to integrate information about organs-on-a-chip from various sources, including literature, patents, raw data from microarray and transcriptome sequencing, several open-access datasets of organs-on-a-chip and organoids, and data generated in our laboratory. OOCDB contains dozens of sub-databases and analysis tools, and each sub-database contains various data associated with organs-on-a-chip, with the goal of providing researchers with a comprehensive, systematic, and convenient search engine. Furthermore, it offers a variety of other functions, such as <strong>mathematical modeling</strong>, three-dimensional modeling, and <strong>citation mapping</strong>, to meet the needs of researchers and promote the development of organs-on-a-chip. The OOCDB is available at <span>http://www.organchip.cn</span><svg><path></path></svg>.</p></div>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OOCDB: A Comprehensive, Systematic, and Real-time Organs-on-a-chip Database\",\"authors\":\"Jian Li ,&nbsp;Weicheng Liang ,&nbsp;Zaozao Chen ,&nbsp;Xingyu Li ,&nbsp;Pan Gu ,&nbsp;Anna Liu ,&nbsp;Pin Chen ,&nbsp;Qiwei Li ,&nbsp;Xueyin Mei ,&nbsp;Jing Yang ,&nbsp;Jun Liu ,&nbsp;Lincao Jiang ,&nbsp;Zhongze Gu\",\"doi\":\"10.1016/j.gpb.2023.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><strong>Organs-on-a-chip</strong> is a microfluidic microphysiological system that uses microfluidic technology to analyze the structure and function of living human cells at the tissue and <strong>organ</strong> levels <em>in vitro</em>. Organs-on-a-chip technology, as opposed to traditional two-dimensional cell culture and animal models, can more closely simulate pathologic and toxicologic interactions between different organs or tissues and reflect the collaborative response of multiple organs to drugs. Despite the fact that many organs-on-a-chip-related data have been published, none of the current <strong>databases</strong> have all of the following functions: searching, downloading, as well as analyzing data and results from the literature on organs-on-a-chip. Therefore, we created an organs-on-a-chip database (OOCDB) as a platform to integrate information about organs-on-a-chip from various sources, including literature, patents, raw data from microarray and transcriptome sequencing, several open-access datasets of organs-on-a-chip and organoids, and data generated in our laboratory. OOCDB contains dozens of sub-databases and analysis tools, and each sub-database contains various data associated with organs-on-a-chip, with the goal of providing researchers with a comprehensive, systematic, and convenient search engine. Furthermore, it offers a variety of other functions, such as <strong>mathematical modeling</strong>, three-dimensional modeling, and <strong>citation mapping</strong>, to meet the needs of researchers and promote the development of organs-on-a-chip. The OOCDB is available at <span>http://www.organchip.cn</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":12528,\"journal\":{\"name\":\"Genomics, Proteomics & Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, Proteomics & Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1672022923000013\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672022923000013","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

芯片组织是一种微流体微物理系统,使用微流体技术在体外组织和器官水平上分析活的人类细胞的结构和功能。与传统的二维细胞培养和动物模型相比,芯片组织器技术可以更紧密地模拟不同器官或组织之间的病理和毒理学相互作用,并反映多个器官对药物的协同反应。尽管已经发布了许多与芯片组织相关的数据,但目前的数据库都不具备以下全部功能:搜索、下载以及分析芯片组织文献中的数据和结果。因此,我们创建了一个芯片组织数据库(OOCDB),作为一个平台,整合来自各种来源的芯片组织信息,包括文献、专利、微阵列和转录组测序的原始数据、芯片组织和类器官的几个开放获取数据集,以及我们实验室生成的数据。OOCDB包含数十个子数据库和分析工具,每个子数据库都包含与芯片上组织相关的各种数据,目的是为研究人员提供一个全面、系统、方便的搜索引擎。此外,它还提供了各种其他功能,如数学建模、三维建模和引文映射,以满足研究人员的需求,促进芯片上组织的发展。OOCDB可在http://www.organchip.cn.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OOCDB: A Comprehensive, Systematic, and Real-time Organs-on-a-chip Database

Organs-on-a-chip is a microfluidic microphysiological system that uses microfluidic technology to analyze the structure and function of living human cells at the tissue and organ levels in vitro. Organs-on-a-chip technology, as opposed to traditional two-dimensional cell culture and animal models, can more closely simulate pathologic and toxicologic interactions between different organs or tissues and reflect the collaborative response of multiple organs to drugs. Despite the fact that many organs-on-a-chip-related data have been published, none of the current databases have all of the following functions: searching, downloading, as well as analyzing data and results from the literature on organs-on-a-chip. Therefore, we created an organs-on-a-chip database (OOCDB) as a platform to integrate information about organs-on-a-chip from various sources, including literature, patents, raw data from microarray and transcriptome sequencing, several open-access datasets of organs-on-a-chip and organoids, and data generated in our laboratory. OOCDB contains dozens of sub-databases and analysis tools, and each sub-database contains various data associated with organs-on-a-chip, with the goal of providing researchers with a comprehensive, systematic, and convenient search engine. Furthermore, it offers a variety of other functions, such as mathematical modeling, three-dimensional modeling, and citation mapping, to meet the needs of researchers and promote the development of organs-on-a-chip. The OOCDB is available at http://www.organchip.cn.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genomics, Proteomics & Bioinformatics
Genomics, Proteomics & Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
14.30
自引率
4.20%
发文量
844
审稿时长
61 days
期刊介绍: Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.
期刊最新文献
Review and Evaluate the Bioinformatics Analysis Strategies of ATAC-seq and CUT&Tag Data. Identification of highly repetitive barley enhancers with long-range regulation potential via STARR-seq CpG island definition and methylation mapping of the T2T-YAO genome Pindel-TD: a tandem duplication detector based on a pattern growth approach SMARTdb: An Integrated Database for Exploring Single-cell Multi-omics Data of Reproductive Medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1