Thomas Dietzen, Randall Ali, Maja Taseska, Toon van Waterschoot
{"title":"MYRiAD:一个多阵列房间声学数据库。","authors":"Thomas Dietzen, Randall Ali, Maja Taseska, Toon van Waterschoot","doi":"10.1186/s13636-023-00284-9","DOIUrl":null,"url":null,"abstract":"<p><p>In the development of acoustic signal processing algorithms, their evaluation in various acoustic environments is of utmost importance. In order to advance evaluation in realistic and reproducible scenarios, several high-quality acoustic databases have been developed over the years. In this paper, we present another complementary database of acoustic recordings, referred to as the Multi-arraY Room Acoustic Database (MYRiAD). The MYRiAD database is unique in its diversity of microphone configurations suiting a wide range of enhancement and reproduction applications (such as assistive hearing, teleconferencing, or sound zoning), the acoustics of the two recording spaces, and the variety of contained signals including 1214 room impulse responses (RIRs), reproduced speech, music, and stationary noise, as well as recordings of live cocktail parties held in both rooms. The microphone configurations comprise a dummy head (DH) with in-ear omnidirectional microphones, two behind-the-ear (BTE) pieces equipped with 2 omnidirectional microphones each, 5 external omnidirectional microphones (XMs), and two concentric circular microphone arrays (CMAs) consisting of 12 omnidirectional microphones in total. The two recording spaces, namely the SONORA Audio Laboratory (SAL) and the Alamire Interactive Laboratory (AIL), have reverberation times of 2.1 s and 0.5 s, respectively. Audio signals were reproduced using 10 movable loudspeakers in the SAL and a built-in array of 24 loudspeakers in the AIL. MATLAB and Python scripts are included for accessing the signals as well as microphone and loudspeaker coordinates. The database is publicly available (https://zenodo.org/record/7389996).</p>","PeriodicalId":49202,"journal":{"name":"Eurasip Journal on Audio Speech and Music Processing","volume":"2023 1","pages":"17"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133077/pdf/","citationCount":"3","resultStr":"{\"title\":\"MYRiAD: a multi-array room acoustic database.\",\"authors\":\"Thomas Dietzen, Randall Ali, Maja Taseska, Toon van Waterschoot\",\"doi\":\"10.1186/s13636-023-00284-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the development of acoustic signal processing algorithms, their evaluation in various acoustic environments is of utmost importance. In order to advance evaluation in realistic and reproducible scenarios, several high-quality acoustic databases have been developed over the years. In this paper, we present another complementary database of acoustic recordings, referred to as the Multi-arraY Room Acoustic Database (MYRiAD). The MYRiAD database is unique in its diversity of microphone configurations suiting a wide range of enhancement and reproduction applications (such as assistive hearing, teleconferencing, or sound zoning), the acoustics of the two recording spaces, and the variety of contained signals including 1214 room impulse responses (RIRs), reproduced speech, music, and stationary noise, as well as recordings of live cocktail parties held in both rooms. The microphone configurations comprise a dummy head (DH) with in-ear omnidirectional microphones, two behind-the-ear (BTE) pieces equipped with 2 omnidirectional microphones each, 5 external omnidirectional microphones (XMs), and two concentric circular microphone arrays (CMAs) consisting of 12 omnidirectional microphones in total. The two recording spaces, namely the SONORA Audio Laboratory (SAL) and the Alamire Interactive Laboratory (AIL), have reverberation times of 2.1 s and 0.5 s, respectively. Audio signals were reproduced using 10 movable loudspeakers in the SAL and a built-in array of 24 loudspeakers in the AIL. MATLAB and Python scripts are included for accessing the signals as well as microphone and loudspeaker coordinates. The database is publicly available (https://zenodo.org/record/7389996).</p>\",\"PeriodicalId\":49202,\"journal\":{\"name\":\"Eurasip Journal on Audio Speech and Music Processing\",\"volume\":\"2023 1\",\"pages\":\"17\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133077/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasip Journal on Audio Speech and Music Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s13636-023-00284-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Audio Speech and Music Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13636-023-00284-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
In the development of acoustic signal processing algorithms, their evaluation in various acoustic environments is of utmost importance. In order to advance evaluation in realistic and reproducible scenarios, several high-quality acoustic databases have been developed over the years. In this paper, we present another complementary database of acoustic recordings, referred to as the Multi-arraY Room Acoustic Database (MYRiAD). The MYRiAD database is unique in its diversity of microphone configurations suiting a wide range of enhancement and reproduction applications (such as assistive hearing, teleconferencing, or sound zoning), the acoustics of the two recording spaces, and the variety of contained signals including 1214 room impulse responses (RIRs), reproduced speech, music, and stationary noise, as well as recordings of live cocktail parties held in both rooms. The microphone configurations comprise a dummy head (DH) with in-ear omnidirectional microphones, two behind-the-ear (BTE) pieces equipped with 2 omnidirectional microphones each, 5 external omnidirectional microphones (XMs), and two concentric circular microphone arrays (CMAs) consisting of 12 omnidirectional microphones in total. The two recording spaces, namely the SONORA Audio Laboratory (SAL) and the Alamire Interactive Laboratory (AIL), have reverberation times of 2.1 s and 0.5 s, respectively. Audio signals were reproduced using 10 movable loudspeakers in the SAL and a built-in array of 24 loudspeakers in the AIL. MATLAB and Python scripts are included for accessing the signals as well as microphone and loudspeaker coordinates. The database is publicly available (https://zenodo.org/record/7389996).
期刊介绍:
The aim of “EURASIP Journal on Audio, Speech, and Music Processing” is to bring together researchers, scientists and engineers working on the theory and applications of the processing of various audio signals, with a specific focus on speech and music. EURASIP Journal on Audio, Speech, and Music Processing will be an interdisciplinary journal for the dissemination of all basic and applied aspects of speech communication and audio processes.