为医用可控针自动化寻找稳健起始位置的度量标准

Janine Hoelscher, Inbar Fried, Mengyu Fu, Mihir Patwardhan, Max Christman, Jason Akulian, Robert J Webster, Ron Alterovitz
{"title":"为医用可控针自动化寻找稳健起始位置的度量标准","authors":"Janine Hoelscher, Inbar Fried, Mengyu Fu, Mihir Patwardhan, Max Christman, Jason Akulian, Robert J Webster, Ron Alterovitz","doi":"10.1109/iros47612.2022.9982227","DOIUrl":null,"url":null,"abstract":"<p><p>Steerable needles are medical devices with the ability to follow curvilinear paths to reach targets while circumventing obstacles. In the deployment process, a human operator typically places the steerable needle at its start position on a tissue surface and then hands off control to the automation that steers the needle to the target. Due to uncertainty in the placement of the needle by the human operator, choosing a start position that is robust to deviations is crucial since some start positions may make it impossible for the steerable needle to safely reach the target. We introduce a method to efficiently evaluate steerable needle motion plans such that they are safe to variation in the start position. This method can be applied to many steerable needle planners and requires that the needle's orientation angle at insertion can be robotically controlled. Specifically, we introduce a method that builds a funnel around a given plan to determine a safe insertion surface corresponding to insertion points from which it is guaranteed that a collision-free motion plan to the goal can be computed. We use this technique to evaluate multiple feasible plans and select the one that maximizes the size of the safe insertion surface. We evaluate our method through simulation in a lung biopsy scenario and show that the method is able to quickly find needle plans with a large safe insertion surface.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2022 ","pages":"9526-9533"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162587/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Metric for Finding Robust Start Positions for Medical Steerable Needle Automation.\",\"authors\":\"Janine Hoelscher, Inbar Fried, Mengyu Fu, Mihir Patwardhan, Max Christman, Jason Akulian, Robert J Webster, Ron Alterovitz\",\"doi\":\"10.1109/iros47612.2022.9982227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Steerable needles are medical devices with the ability to follow curvilinear paths to reach targets while circumventing obstacles. In the deployment process, a human operator typically places the steerable needle at its start position on a tissue surface and then hands off control to the automation that steers the needle to the target. Due to uncertainty in the placement of the needle by the human operator, choosing a start position that is robust to deviations is crucial since some start positions may make it impossible for the steerable needle to safely reach the target. We introduce a method to efficiently evaluate steerable needle motion plans such that they are safe to variation in the start position. This method can be applied to many steerable needle planners and requires that the needle's orientation angle at insertion can be robotically controlled. Specifically, we introduce a method that builds a funnel around a given plan to determine a safe insertion surface corresponding to insertion points from which it is guaranteed that a collision-free motion plan to the goal can be computed. We use this technique to evaluate multiple feasible plans and select the one that maximizes the size of the safe insertion surface. We evaluate our method through simulation in a lung biopsy scenario and show that the method is able to quickly find needle plans with a large safe insertion surface.</p>\",\"PeriodicalId\":74523,\"journal\":{\"name\":\"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"2022 \",\"pages\":\"9526-9533\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162587/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iros47612.2022.9982227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iros47612.2022.9982227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可转向针是一种医疗设备,能够沿着曲线路径到达目标,同时绕过障碍物。在部署过程中,人类操作员通常会将可转向针放置在组织表面的起始位置,然后将控制权交给自动化设备,由其将针转向目标。由于人类操作员在放置针头时存在不确定性,因此选择一个对偏差具有鲁棒性的起始位置至关重要,因为有些起始位置可能会导致可转向针无法安全到达目标。我们介绍了一种有效评估可转向针运动计划的方法,使其能够安全地应对起始位置的变化。这种方法可应用于多种可转向针计划,并要求可通过机器人控制针插入时的方向角。具体来说,我们引入了一种方法,围绕给定计划建立一个漏斗,以确定与插入点相对应的安全插入面,保证可以从该面计算出通往目标的无碰撞运动计划。我们使用这种技术来评估多个可行计划,并选择能使安全插入面最大化的计划。我们通过模拟肺部活检场景来评估我们的方法,结果表明该方法能够快速找到具有较大安全插入面的针计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Metric for Finding Robust Start Positions for Medical Steerable Needle Automation.

Steerable needles are medical devices with the ability to follow curvilinear paths to reach targets while circumventing obstacles. In the deployment process, a human operator typically places the steerable needle at its start position on a tissue surface and then hands off control to the automation that steers the needle to the target. Due to uncertainty in the placement of the needle by the human operator, choosing a start position that is robust to deviations is crucial since some start positions may make it impossible for the steerable needle to safely reach the target. We introduce a method to efficiently evaluate steerable needle motion plans such that they are safe to variation in the start position. This method can be applied to many steerable needle planners and requires that the needle's orientation angle at insertion can be robotically controlled. Specifically, we introduce a method that builds a funnel around a given plan to determine a safe insertion surface corresponding to insertion points from which it is guaranteed that a collision-free motion plan to the goal can be computed. We use this technique to evaluate multiple feasible plans and select the one that maximizes the size of the safe insertion surface. We evaluate our method through simulation in a lung biopsy scenario and show that the method is able to quickly find needle plans with a large safe insertion surface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FBG-based Shape-Sensing to Enable Lateral Deflection Methods of Autonomous Needle Insertion. An Energetic Approach to Task-Invariant Ankle Exoskeleton Control. Controlling Powered Prosthesis Kinematics over Continuous Transitions Between Walk and Stair Ascent. Effects of Personalization on Gait-State Tracking Performance Using Extended Kalman Filters. Improving Amputee Endurance over Activities of Daily Living with a Robotic Knee-Ankle Prosthesis: A Case Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1