Jonathan B. Burkhardt, John Minor, Feng Shang, William E. Platten III
{"title":"住宅管道系统建模中的压力相关分析","authors":"Jonathan B. Burkhardt, John Minor, Feng Shang, William E. Platten III","doi":"10.1002/aws2.1344","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Modeling premise plumbing systems requires accurate treatment of fixture-specific pressure and flow rate relationships. Each fixture in a building may experience different flow rates based on variable service pressure, its unique pressure-flow behavior, and demands throughout the building. Unique experimentally derived pressure-flow parameters for four faucets, a shower/tub fixture, and toilet were developed. The Water Network Tool for Resilience (WNTR) was also used to explore the impact of premise plumbing systems on water distribution systems through two simple skeletonization cases. Minimum pressures for nodes in water distribution system models that represent demand aggregated premise plumbing systems will likely be non-zero and must capture additional pressure drop or elevation differences at the building scale and associated components, such as water meters or backflow preventers. Results showed that flow rates are impacted by pressure in these systems in complex ways, and usage and system characteristics must be considered to be modeled accurately.</p>\n </section>\n </div>","PeriodicalId":101301,"journal":{"name":"AWWA water science","volume":"5 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://awwa.onlinelibrary.wiley.com/doi/epdf/10.1002/aws2.1344","citationCount":"0","resultStr":"{\"title\":\"Pressure dependent analysis in premise plumbing system modeling\",\"authors\":\"Jonathan B. Burkhardt, John Minor, Feng Shang, William E. Platten III\",\"doi\":\"10.1002/aws2.1344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Modeling premise plumbing systems requires accurate treatment of fixture-specific pressure and flow rate relationships. Each fixture in a building may experience different flow rates based on variable service pressure, its unique pressure-flow behavior, and demands throughout the building. Unique experimentally derived pressure-flow parameters for four faucets, a shower/tub fixture, and toilet were developed. The Water Network Tool for Resilience (WNTR) was also used to explore the impact of premise plumbing systems on water distribution systems through two simple skeletonization cases. Minimum pressures for nodes in water distribution system models that represent demand aggregated premise plumbing systems will likely be non-zero and must capture additional pressure drop or elevation differences at the building scale and associated components, such as water meters or backflow preventers. Results showed that flow rates are impacted by pressure in these systems in complex ways, and usage and system characteristics must be considered to be modeled accurately.</p>\\n </section>\\n </div>\",\"PeriodicalId\":101301,\"journal\":{\"name\":\"AWWA water science\",\"volume\":\"5 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://awwa.onlinelibrary.wiley.com/doi/epdf/10.1002/aws2.1344\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AWWA water science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aws2.1344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AWWA water science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aws2.1344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pressure dependent analysis in premise plumbing system modeling
Modeling premise plumbing systems requires accurate treatment of fixture-specific pressure and flow rate relationships. Each fixture in a building may experience different flow rates based on variable service pressure, its unique pressure-flow behavior, and demands throughout the building. Unique experimentally derived pressure-flow parameters for four faucets, a shower/tub fixture, and toilet were developed. The Water Network Tool for Resilience (WNTR) was also used to explore the impact of premise plumbing systems on water distribution systems through two simple skeletonization cases. Minimum pressures for nodes in water distribution system models that represent demand aggregated premise plumbing systems will likely be non-zero and must capture additional pressure drop or elevation differences at the building scale and associated components, such as water meters or backflow preventers. Results showed that flow rates are impacted by pressure in these systems in complex ways, and usage and system characteristics must be considered to be modeled accurately.