{"title":"某些腙类化合物的合成、计算分析、抗菌、抗氧化、台苯蓝排斥试验、β-血红素试验和抗炎研究(上)。","authors":"Suraj N Mali, Anima Pandey","doi":"10.2174/1573409918666220929145824","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hydrazone and its azomethine (-NHN=CH-) derivatives are widely reported for their immense pharmacological potential. They have also been reported to possess potent anti-tuberculosis, anti-malarial, anti-inflammatory, and anti-oxidant activities. Considering their pharmacological significance, we herein synthesized a set of 10 hydrazones (1S-10S) using green, biodegradable chitosan and HCl as catalyst.</p><p><strong>Methods: </strong>All synthesized compounds were characterized using modern spectroscopic techniques, including Nuclear magnetic resonance, 1H-/13C-NMR; Fourier transform infrared spectroscopy (FT-IR); Ultraviolet-visible spectroscopy; Mass spectrometry (m/z), etc. Synthesized compounds were in silico screened using molecular docking, dynamics, pharmacokinetics, theoretical properties, and common pharmacophore analysis. Moreover, we also subjected all compounds to DPPH radical scavenging assay, protein denaturation assay, Trypan Blue assay for cell viability assessments, β-hematin assay for hemozoin inhibition analysis and standard antimicrobial analysis.</p><p><strong>Results: </strong>Our results suggested that the synthesized compound 2S had high potency against studied microbial strains (minimum MIC = 3.12 μg/mL). Our antioxidant analysis for 1S-10S revealed that our compounds had radical scavenging effects ranging from 25.1-80.3 %. Compounds 2S exhibited % cell viability of 68.92% (at 100 μg concentration of sample), while the same compound retained anti-inflammatory % inhibition at 62.16 %. Compound 2S was obtained as the best docked molecule, with a docking score of -5.32 Kcal/mol with target pdb id: 1d7u protein. Molecular dynamics simulation and normal mode analysis for 100 ns for 1d7u:2S retained good stability. Finally, in silico pharmacokinetics, theoretical properties and pharmacophoric features were assessed.</p><p><strong>Conclusion: </strong>In summary, synthesized hydrazone exhibited a good biological profile according to in silico and in vitro studies. However, further in vivo studies are required that may shed more insights on its potencies.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":"19 2","pages":"108-122"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Synthesis, Computational Analysis, Antimicrobial, Antioxidant, Trypan Blue Exclusion Assay, β-hematin Assay and Anti-inflammatory Studies of some Hydrazones (Part-I).\",\"authors\":\"Suraj N Mali, Anima Pandey\",\"doi\":\"10.2174/1573409918666220929145824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hydrazone and its azomethine (-NHN=CH-) derivatives are widely reported for their immense pharmacological potential. They have also been reported to possess potent anti-tuberculosis, anti-malarial, anti-inflammatory, and anti-oxidant activities. Considering their pharmacological significance, we herein synthesized a set of 10 hydrazones (1S-10S) using green, biodegradable chitosan and HCl as catalyst.</p><p><strong>Methods: </strong>All synthesized compounds were characterized using modern spectroscopic techniques, including Nuclear magnetic resonance, 1H-/13C-NMR; Fourier transform infrared spectroscopy (FT-IR); Ultraviolet-visible spectroscopy; Mass spectrometry (m/z), etc. Synthesized compounds were in silico screened using molecular docking, dynamics, pharmacokinetics, theoretical properties, and common pharmacophore analysis. Moreover, we also subjected all compounds to DPPH radical scavenging assay, protein denaturation assay, Trypan Blue assay for cell viability assessments, β-hematin assay for hemozoin inhibition analysis and standard antimicrobial analysis.</p><p><strong>Results: </strong>Our results suggested that the synthesized compound 2S had high potency against studied microbial strains (minimum MIC = 3.12 μg/mL). Our antioxidant analysis for 1S-10S revealed that our compounds had radical scavenging effects ranging from 25.1-80.3 %. Compounds 2S exhibited % cell viability of 68.92% (at 100 μg concentration of sample), while the same compound retained anti-inflammatory % inhibition at 62.16 %. Compound 2S was obtained as the best docked molecule, with a docking score of -5.32 Kcal/mol with target pdb id: 1d7u protein. Molecular dynamics simulation and normal mode analysis for 100 ns for 1d7u:2S retained good stability. Finally, in silico pharmacokinetics, theoretical properties and pharmacophoric features were assessed.</p><p><strong>Conclusion: </strong>In summary, synthesized hydrazone exhibited a good biological profile according to in silico and in vitro studies. However, further in vivo studies are required that may shed more insights on its potencies.</p>\",\"PeriodicalId\":10886,\"journal\":{\"name\":\"Current computer-aided drug design\",\"volume\":\"19 2\",\"pages\":\"108-122\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current computer-aided drug design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1573409918666220929145824\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1573409918666220929145824","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Synthesis, Computational Analysis, Antimicrobial, Antioxidant, Trypan Blue Exclusion Assay, β-hematin Assay and Anti-inflammatory Studies of some Hydrazones (Part-I).
Background: Hydrazone and its azomethine (-NHN=CH-) derivatives are widely reported for their immense pharmacological potential. They have also been reported to possess potent anti-tuberculosis, anti-malarial, anti-inflammatory, and anti-oxidant activities. Considering their pharmacological significance, we herein synthesized a set of 10 hydrazones (1S-10S) using green, biodegradable chitosan and HCl as catalyst.
Methods: All synthesized compounds were characterized using modern spectroscopic techniques, including Nuclear magnetic resonance, 1H-/13C-NMR; Fourier transform infrared spectroscopy (FT-IR); Ultraviolet-visible spectroscopy; Mass spectrometry (m/z), etc. Synthesized compounds were in silico screened using molecular docking, dynamics, pharmacokinetics, theoretical properties, and common pharmacophore analysis. Moreover, we also subjected all compounds to DPPH radical scavenging assay, protein denaturation assay, Trypan Blue assay for cell viability assessments, β-hematin assay for hemozoin inhibition analysis and standard antimicrobial analysis.
Results: Our results suggested that the synthesized compound 2S had high potency against studied microbial strains (minimum MIC = 3.12 μg/mL). Our antioxidant analysis for 1S-10S revealed that our compounds had radical scavenging effects ranging from 25.1-80.3 %. Compounds 2S exhibited % cell viability of 68.92% (at 100 μg concentration of sample), while the same compound retained anti-inflammatory % inhibition at 62.16 %. Compound 2S was obtained as the best docked molecule, with a docking score of -5.32 Kcal/mol with target pdb id: 1d7u protein. Molecular dynamics simulation and normal mode analysis for 100 ns for 1d7u:2S retained good stability. Finally, in silico pharmacokinetics, theoretical properties and pharmacophoric features were assessed.
Conclusion: In summary, synthesized hydrazone exhibited a good biological profile according to in silico and in vitro studies. However, further in vivo studies are required that may shed more insights on its potencies.
期刊介绍:
Aims & Scope
Current Computer-Aided Drug Design aims to publish all the latest developments in drug design based on computational techniques. The field of computer-aided drug design has had extensive impact in the area of drug design.
Current Computer-Aided Drug Design is an essential journal for all medicinal chemists who wish to be kept informed and up-to-date with all the latest and important developments in computer-aided methodologies and their applications in drug discovery. Each issue contains a series of timely, in-depth reviews, original research articles and letter articles written by leaders in the field, covering a range of computational techniques for drug design, screening, ADME studies, theoretical chemistry; computational chemistry; computer and molecular graphics; molecular modeling; protein engineering; drug design; expert systems; general structure-property relationships; molecular dynamics; chemical database development and usage etc., providing excellent rationales for drug development.