{"title":"小建中汤对慢性萎缩性胃炎作用机制的综合药物信息学研究","authors":"Xu Lian, Kaidi Fan, Xuemei Qin, Yuetao Liu","doi":"10.2174/1573409919666230720141115","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Traditional Chinese medicine (TCM) Xiao Jianzhong Tang (XJZ) has a favorable efficacy in the treatment of chronic atrophic gastritis (CAG). However, its pharmacological mechanism has not been fully explained.</p><p><strong>Objective: </strong>The purpose of this study was to find the potential mechanism of XJZ in the treatment of CAG using pharmacocoinformatics approaches.</p><p><strong>Methods: </strong>Network pharmacology was used to screen out the key compounds and key targets, MODELLER and GNNRefine were used to repair and refine proteins, Autodock vina was employed to perform molecular docking, Δ <sub>Lin_F9</sub>XGB was used to score the docking results, and Gromacs was used to perform molecular dynamics simulations (MD).</p><p><strong>Results: </strong>Kaempferol, licochalcone A, and naringenin, were obtained as key compounds, while AKT1, MAPK1, MAPK14, RELA, STAT1, and STAT3 were acquired as key targets. Among docking results, 12 complexes scored greater than five. They were run for 50ns MD. The free binding energy of AKT1-licochalcone A and MAPK1-licochalcone A was less than -15 kcal/mol and AKT1-naringenin and STAT3-licochalcone A was less than -9 kcal/mol. These complexes were crucial in XJZ treating CAG.</p><p><strong>Conclusion: </strong>Our findings suggest that licochalcone A could act on AKT1, MAPK1, and STAT3, and naringenin could act on AKT1 to play the potential therapeutic effect on CAG. The work also provides a powerful approach to interpreting the complex mechanism of TCM through the amalgamation of network pharmacology, deep learning-based protein refinement, molecular docking, machine learning-based binding affinity estimation, MD simulations, and MM-PBSA-based estimation of binding free energy.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":"598-615"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amalgamated Pharmacoinformatics Study to Investigate the Mechanism of Xiao Jianzhong Tang against Chronic Atrophic Gastritis.\",\"authors\":\"Xu Lian, Kaidi Fan, Xuemei Qin, Yuetao Liu\",\"doi\":\"10.2174/1573409919666230720141115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Traditional Chinese medicine (TCM) Xiao Jianzhong Tang (XJZ) has a favorable efficacy in the treatment of chronic atrophic gastritis (CAG). However, its pharmacological mechanism has not been fully explained.</p><p><strong>Objective: </strong>The purpose of this study was to find the potential mechanism of XJZ in the treatment of CAG using pharmacocoinformatics approaches.</p><p><strong>Methods: </strong>Network pharmacology was used to screen out the key compounds and key targets, MODELLER and GNNRefine were used to repair and refine proteins, Autodock vina was employed to perform molecular docking, Δ <sub>Lin_F9</sub>XGB was used to score the docking results, and Gromacs was used to perform molecular dynamics simulations (MD).</p><p><strong>Results: </strong>Kaempferol, licochalcone A, and naringenin, were obtained as key compounds, while AKT1, MAPK1, MAPK14, RELA, STAT1, and STAT3 were acquired as key targets. Among docking results, 12 complexes scored greater than five. They were run for 50ns MD. The free binding energy of AKT1-licochalcone A and MAPK1-licochalcone A was less than -15 kcal/mol and AKT1-naringenin and STAT3-licochalcone A was less than -9 kcal/mol. These complexes were crucial in XJZ treating CAG.</p><p><strong>Conclusion: </strong>Our findings suggest that licochalcone A could act on AKT1, MAPK1, and STAT3, and naringenin could act on AKT1 to play the potential therapeutic effect on CAG. The work also provides a powerful approach to interpreting the complex mechanism of TCM through the amalgamation of network pharmacology, deep learning-based protein refinement, molecular docking, machine learning-based binding affinity estimation, MD simulations, and MM-PBSA-based estimation of binding free energy.</p>\",\"PeriodicalId\":10886,\"journal\":{\"name\":\"Current computer-aided drug design\",\"volume\":\" \",\"pages\":\"598-615\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current computer-aided drug design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1573409919666230720141115\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1573409919666230720141115","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Amalgamated Pharmacoinformatics Study to Investigate the Mechanism of Xiao Jianzhong Tang against Chronic Atrophic Gastritis.
Background: Traditional Chinese medicine (TCM) Xiao Jianzhong Tang (XJZ) has a favorable efficacy in the treatment of chronic atrophic gastritis (CAG). However, its pharmacological mechanism has not been fully explained.
Objective: The purpose of this study was to find the potential mechanism of XJZ in the treatment of CAG using pharmacocoinformatics approaches.
Methods: Network pharmacology was used to screen out the key compounds and key targets, MODELLER and GNNRefine were used to repair and refine proteins, Autodock vina was employed to perform molecular docking, Δ Lin_F9XGB was used to score the docking results, and Gromacs was used to perform molecular dynamics simulations (MD).
Results: Kaempferol, licochalcone A, and naringenin, were obtained as key compounds, while AKT1, MAPK1, MAPK14, RELA, STAT1, and STAT3 were acquired as key targets. Among docking results, 12 complexes scored greater than five. They were run for 50ns MD. The free binding energy of AKT1-licochalcone A and MAPK1-licochalcone A was less than -15 kcal/mol and AKT1-naringenin and STAT3-licochalcone A was less than -9 kcal/mol. These complexes were crucial in XJZ treating CAG.
Conclusion: Our findings suggest that licochalcone A could act on AKT1, MAPK1, and STAT3, and naringenin could act on AKT1 to play the potential therapeutic effect on CAG. The work also provides a powerful approach to interpreting the complex mechanism of TCM through the amalgamation of network pharmacology, deep learning-based protein refinement, molecular docking, machine learning-based binding affinity estimation, MD simulations, and MM-PBSA-based estimation of binding free energy.
期刊介绍:
Aims & Scope
Current Computer-Aided Drug Design aims to publish all the latest developments in drug design based on computational techniques. The field of computer-aided drug design has had extensive impact in the area of drug design.
Current Computer-Aided Drug Design is an essential journal for all medicinal chemists who wish to be kept informed and up-to-date with all the latest and important developments in computer-aided methodologies and their applications in drug discovery. Each issue contains a series of timely, in-depth reviews, original research articles and letter articles written by leaders in the field, covering a range of computational techniques for drug design, screening, ADME studies, theoretical chemistry; computational chemistry; computer and molecular graphics; molecular modeling; protein engineering; drug design; expert systems; general structure-property relationships; molecular dynamics; chemical database development and usage etc., providing excellent rationales for drug development.