Mohammad Babatabar Darzi, Farkhondeh Nemati, Hossein Azizi, Abbasali Dehpour Jouybari
{"title":"精子发生过程中小鼠睾丸PLZF和VASA的免疫组织化学和免疫细胞化学分析。","authors":"Mohammad Babatabar Darzi, Farkhondeh Nemati, Hossein Azizi, Abbasali Dehpour Jouybari","doi":"10.1017/S0967199423000047","DOIUrl":null,"url":null,"abstract":"<p><p>Spermatogonial stem cells (SSCs) are the basis of male spermatogenesis and fertility. SSCs are distinguished by their ability to self-renew and differentiate into spermatozoa throughout the male reproductive life and pass genetic information to the next generation. Immunohistochemistry (IHC), immunocytochemistry (ICC) and Fluidigm reverse transcriptase-polymerase chain reaction (RT-PCR) were used to analyze the expression of PLZF and VASA in mice testis tissue. In this experimental study, whereas undifferentiated spermatogonial cells sharply expressed PLZF, other types of germ cells located in the seminiferous tubule were negative for this marker. Conversely, the germ cells near the basal membrane of the seminiferous tubule showed VASA expression, whereas the undifferentiated germ cells located on the basal membrane were negative. The ICC analysis indicated higher expression of PLZF in the isolated undifferentiated cells compared with differentiated germ cells. Fluidigm real-time RT-PCR results demonstrated a significant expression (<i>P</i> < 0.05) of VASA in the SSCs compared with differentiated cells and also showed expression of PLZF in undifferentiated spermatogonia. These results clearly proved the role of PLZF as a specific marker for SSCs, and can be beneficial for advanced research on <i>in vitro</i> differentiation of SSCs to functional sperms.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Immunohistochemistry and immunocytochemistry analysis of PLZF and VASA in mice testis during spermatogenesis.\",\"authors\":\"Mohammad Babatabar Darzi, Farkhondeh Nemati, Hossein Azizi, Abbasali Dehpour Jouybari\",\"doi\":\"10.1017/S0967199423000047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spermatogonial stem cells (SSCs) are the basis of male spermatogenesis and fertility. SSCs are distinguished by their ability to self-renew and differentiate into spermatozoa throughout the male reproductive life and pass genetic information to the next generation. Immunohistochemistry (IHC), immunocytochemistry (ICC) and Fluidigm reverse transcriptase-polymerase chain reaction (RT-PCR) were used to analyze the expression of PLZF and VASA in mice testis tissue. In this experimental study, whereas undifferentiated spermatogonial cells sharply expressed PLZF, other types of germ cells located in the seminiferous tubule were negative for this marker. Conversely, the germ cells near the basal membrane of the seminiferous tubule showed VASA expression, whereas the undifferentiated germ cells located on the basal membrane were negative. The ICC analysis indicated higher expression of PLZF in the isolated undifferentiated cells compared with differentiated germ cells. Fluidigm real-time RT-PCR results demonstrated a significant expression (<i>P</i> < 0.05) of VASA in the SSCs compared with differentiated cells and also showed expression of PLZF in undifferentiated spermatogonia. These results clearly proved the role of PLZF as a specific marker for SSCs, and can be beneficial for advanced research on <i>in vitro</i> differentiation of SSCs to functional sperms.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1017/S0967199423000047\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0967199423000047","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Immunohistochemistry and immunocytochemistry analysis of PLZF and VASA in mice testis during spermatogenesis.
Spermatogonial stem cells (SSCs) are the basis of male spermatogenesis and fertility. SSCs are distinguished by their ability to self-renew and differentiate into spermatozoa throughout the male reproductive life and pass genetic information to the next generation. Immunohistochemistry (IHC), immunocytochemistry (ICC) and Fluidigm reverse transcriptase-polymerase chain reaction (RT-PCR) were used to analyze the expression of PLZF and VASA in mice testis tissue. In this experimental study, whereas undifferentiated spermatogonial cells sharply expressed PLZF, other types of germ cells located in the seminiferous tubule were negative for this marker. Conversely, the germ cells near the basal membrane of the seminiferous tubule showed VASA expression, whereas the undifferentiated germ cells located on the basal membrane were negative. The ICC analysis indicated higher expression of PLZF in the isolated undifferentiated cells compared with differentiated germ cells. Fluidigm real-time RT-PCR results demonstrated a significant expression (P < 0.05) of VASA in the SSCs compared with differentiated cells and also showed expression of PLZF in undifferentiated spermatogonia. These results clearly proved the role of PLZF as a specific marker for SSCs, and can be beneficial for advanced research on in vitro differentiation of SSCs to functional sperms.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.