{"title":"热电效应冲击下皮肤组织三种不同生物热传导模型精确解的数学建模。","authors":"Eman A N Al-Lehaibi","doi":"10.1155/2023/3863773","DOIUrl":null,"url":null,"abstract":"<p><p>This research deals with the temperature increment and responsiveness of skin tissue to a continuous flow of surface heat induced by a constant-voltage electrical current. The exact analytical solution for the dual-phase-lag (DPL) of bioheat transfer has been obtained. It is used to confine the variables to a limited domain to solve the governing equations. The transition temperature reactions have been measured and investigated. The figures provide a comparison of the Pennes, Tzou models, and Vernotte-Cattaneo models. The numerical results demonstrate the values of the voltage, resistance, electric shock time, and dual-phase-lag time parameters which have significant influences on the distributions of the dynamic and conductive temperature rise through the skin tissue.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365921/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mathematical Modelling with the Exact Solution of Three Different Bioheat Conduction Models of a Skin Tissue Shocked by Thermoelectrical Effect.\",\"authors\":\"Eman A N Al-Lehaibi\",\"doi\":\"10.1155/2023/3863773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research deals with the temperature increment and responsiveness of skin tissue to a continuous flow of surface heat induced by a constant-voltage electrical current. The exact analytical solution for the dual-phase-lag (DPL) of bioheat transfer has been obtained. It is used to confine the variables to a limited domain to solve the governing equations. The transition temperature reactions have been measured and investigated. The figures provide a comparison of the Pennes, Tzou models, and Vernotte-Cattaneo models. The numerical results demonstrate the values of the voltage, resistance, electric shock time, and dual-phase-lag time parameters which have significant influences on the distributions of the dynamic and conductive temperature rise through the skin tissue.</p>\",\"PeriodicalId\":13704,\"journal\":{\"name\":\"International Journal of Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10365921/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3863773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3863773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Mathematical Modelling with the Exact Solution of Three Different Bioheat Conduction Models of a Skin Tissue Shocked by Thermoelectrical Effect.
This research deals with the temperature increment and responsiveness of skin tissue to a continuous flow of surface heat induced by a constant-voltage electrical current. The exact analytical solution for the dual-phase-lag (DPL) of bioheat transfer has been obtained. It is used to confine the variables to a limited domain to solve the governing equations. The transition temperature reactions have been measured and investigated. The figures provide a comparison of the Pennes, Tzou models, and Vernotte-Cattaneo models. The numerical results demonstrate the values of the voltage, resistance, electric shock time, and dual-phase-lag time parameters which have significant influences on the distributions of the dynamic and conductive temperature rise through the skin tissue.