CRISPR/Cas基因组编辑的计算工具和资源

IF 11.5 2区 生物学 Q1 GENETICS & HEREDITY Genomics, Proteomics & Bioinformatics Pub Date : 2023-02-01 DOI:10.1016/j.gpb.2022.02.006
Chao Li , Wen Chu , Rafaqat Ali Gill , Shifei Sang , Yuqin Shi , Xuezhi Hu , Yuting Yang , Qamar U. Zaman , Baohong Zhang
{"title":"CRISPR/Cas基因组编辑的计算工具和资源","authors":"Chao Li ,&nbsp;Wen Chu ,&nbsp;Rafaqat Ali Gill ,&nbsp;Shifei Sang ,&nbsp;Yuqin Shi ,&nbsp;Xuezhi Hu ,&nbsp;Yuting Yang ,&nbsp;Qamar U. Zaman ,&nbsp;Baohong Zhang","doi":"10.1016/j.gpb.2022.02.006","DOIUrl":null,"url":null,"abstract":"<div><p>The past decade has witnessed a rapid evolution in identifying more versatile clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) nucleases and their functional variants, as well as in developing precise CRISPR/Cas-derived genome editors. The programmable and robust features of the genome editors provide an effective RNA-guided platform for fundamental life science research and subsequent applications in diverse scenarios, including biomedical innovation and targeted crop improvement. One of the most essential principles is to guide alterations in genomic sequences or genes in the intended manner without undesired off-target impacts, which strongly depends on the <strong>efficiency and specificity</strong> of single guide RNA (<strong>sgRNA</strong>)-directed recognition of targeted DNA sequences. Recent advances in empirical scoring <strong>algorithms</strong> and machine learning models have facilitated sgRNA design and off-target prediction. In this review, we first briefly introduce the different features of CRISPR/Cas tools that should be taken into consideration to achieve specific purposes. Secondly, we focus on the computer-assisted tools and resources that are widely used in designing sgRNAs and analyzing CRISPR/Cas-induced on- and off-target mutations. Thirdly, we provide insights into the limitations of available <strong>computational tools</strong> that would help researchers of this field for further optimization. Lastly, we suggest a simple but effective workflow for choosing and applying web-based resources and tools for CRISPR/Cas <strong>genome editing</strong>.</p></div>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":"21 1","pages":"Pages 108-126"},"PeriodicalIF":11.5000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372911/pdf/","citationCount":"38","resultStr":"{\"title\":\"Computational Tools and Resources for CRISPR/Cas Genome Editing\",\"authors\":\"Chao Li ,&nbsp;Wen Chu ,&nbsp;Rafaqat Ali Gill ,&nbsp;Shifei Sang ,&nbsp;Yuqin Shi ,&nbsp;Xuezhi Hu ,&nbsp;Yuting Yang ,&nbsp;Qamar U. Zaman ,&nbsp;Baohong Zhang\",\"doi\":\"10.1016/j.gpb.2022.02.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The past decade has witnessed a rapid evolution in identifying more versatile clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) nucleases and their functional variants, as well as in developing precise CRISPR/Cas-derived genome editors. The programmable and robust features of the genome editors provide an effective RNA-guided platform for fundamental life science research and subsequent applications in diverse scenarios, including biomedical innovation and targeted crop improvement. One of the most essential principles is to guide alterations in genomic sequences or genes in the intended manner without undesired off-target impacts, which strongly depends on the <strong>efficiency and specificity</strong> of single guide RNA (<strong>sgRNA</strong>)-directed recognition of targeted DNA sequences. Recent advances in empirical scoring <strong>algorithms</strong> and machine learning models have facilitated sgRNA design and off-target prediction. In this review, we first briefly introduce the different features of CRISPR/Cas tools that should be taken into consideration to achieve specific purposes. Secondly, we focus on the computer-assisted tools and resources that are widely used in designing sgRNAs and analyzing CRISPR/Cas-induced on- and off-target mutations. Thirdly, we provide insights into the limitations of available <strong>computational tools</strong> that would help researchers of this field for further optimization. Lastly, we suggest a simple but effective workflow for choosing and applying web-based resources and tools for CRISPR/Cas <strong>genome editing</strong>.</p></div>\",\"PeriodicalId\":12528,\"journal\":{\"name\":\"Genomics, Proteomics & Bioinformatics\",\"volume\":\"21 1\",\"pages\":\"Pages 108-126\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372911/pdf/\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, Proteomics & Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1672022922000274\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672022922000274","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 38

摘要

在过去的十年里,在识别更通用的簇状规则间隔短回文重复序列(CRISPR)/CRISPR相关蛋白(Cas)核酸酶及其功能变体方面,以及在开发精确的CRISPR/Cas衍生基因组编辑器方面,都取得了快速的进展。基因组编辑器的可编程和强大功能为基础生命科学研究和随后在各种场景中的应用提供了一个有效的RNA引导平台,包括生物医学创新和有针对性的作物改良。最基本的原则之一是以预期的方式引导基因组序列或基因的改变,而不会产生不希望的脱靶影响,这在很大程度上取决于单引导RNA(sgRNA)定向识别靶向DNA序列的效率和特异性。经验评分算法和机器学习模型的最新进展促进了sgRNA的设计和脱靶预测。在这篇综述中,我们首先简要介绍了CRISPR/Cas工具的不同特征,这些特征应被考虑以实现特定目的。其次,我们关注广泛用于设计sgRNA和分析CRISPR/Cas诱导的靶上和靶外突变的计算机辅助工具和资源。第三,我们深入了解了现有计算工具的局限性,这将有助于该领域的研究人员进行进一步的优化。最后,我们提出了一个简单但有效的工作流程,用于选择和应用基于网络的资源和工具进行CRISPR/Cas基因组编辑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational Tools and Resources for CRISPR/Cas Genome Editing

The past decade has witnessed a rapid evolution in identifying more versatile clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) nucleases and their functional variants, as well as in developing precise CRISPR/Cas-derived genome editors. The programmable and robust features of the genome editors provide an effective RNA-guided platform for fundamental life science research and subsequent applications in diverse scenarios, including biomedical innovation and targeted crop improvement. One of the most essential principles is to guide alterations in genomic sequences or genes in the intended manner without undesired off-target impacts, which strongly depends on the efficiency and specificity of single guide RNA (sgRNA)-directed recognition of targeted DNA sequences. Recent advances in empirical scoring algorithms and machine learning models have facilitated sgRNA design and off-target prediction. In this review, we first briefly introduce the different features of CRISPR/Cas tools that should be taken into consideration to achieve specific purposes. Secondly, we focus on the computer-assisted tools and resources that are widely used in designing sgRNAs and analyzing CRISPR/Cas-induced on- and off-target mutations. Thirdly, we provide insights into the limitations of available computational tools that would help researchers of this field for further optimization. Lastly, we suggest a simple but effective workflow for choosing and applying web-based resources and tools for CRISPR/Cas genome editing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genomics, Proteomics & Bioinformatics
Genomics, Proteomics & Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
14.30
自引率
4.20%
发文量
844
审稿时长
61 days
期刊介绍: Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.
期刊最新文献
Review and Evaluate the Bioinformatics Analysis Strategies of ATAC-seq and CUT&Tag Data. Identification of highly repetitive barley enhancers with long-range regulation potential via STARR-seq CpG island definition and methylation mapping of the T2T-YAO genome Pindel-TD: a tandem duplication detector based on a pattern growth approach SMARTdb: An Integrated Database for Exploring Single-cell Multi-omics Data of Reproductive Medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1