{"title":"颈椎前路钢板的拓扑优化及其生物力学特性。","authors":"Peng Ye, Rongchang Fu, Zhaoyao Wang","doi":"10.3233/BME-230019","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Currently, quadrilateral anterior cervical plate (QACP) is a highly prevalent ACP.</p><p><strong>Objective: </strong>This study aims to design a novel ACP using topology optimization (TOACP).</p><p><strong>Methods: </strong>A completed model for C1-C7 cervical segments was established and validated. QACP and TOACP cage systems were implanted within two cervical vertebrae models, respectively, and peak stresses and stress distributions for screw, plate, endplate and cage displacement were investigated under differing exercise modes.</p><p><strong>Results: </strong>Stress levels upon QACP screw were maximized for over-extension exercise (243.3 MPa, 3.35% > TOACP screw). Stress level upon TOACP plate was maximized for over-extension exercise (118.2 MPa, 7.26% > QACP screw). Following QACP cage system implantation, stress on endplate and cage displacement were maximized for extension exercise, which were 27.1%, and 6.3% > TOACP cage system, respectively. Finite element analysis results revealed that topological optimization of the plate can effectively reduce screw stress, thereby enhancing cervical segments' stability during surgery. Furthermore, stress on endplate and cage displacement decreased, indicating great potential in cage sinking and fusion enhancement.</p><p><strong>Conclusions: </strong>Topological optimization of the plate equips the cage system with advantages in clinical applications and biomechanical performance, providing alternative solutions and a theoretical basis for ACP design.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"525-535"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological optimization of anterior cervical plate (ACP) and its biomechanic characteristics.\",\"authors\":\"Peng Ye, Rongchang Fu, Zhaoyao Wang\",\"doi\":\"10.3233/BME-230019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Currently, quadrilateral anterior cervical plate (QACP) is a highly prevalent ACP.</p><p><strong>Objective: </strong>This study aims to design a novel ACP using topology optimization (TOACP).</p><p><strong>Methods: </strong>A completed model for C1-C7 cervical segments was established and validated. QACP and TOACP cage systems were implanted within two cervical vertebrae models, respectively, and peak stresses and stress distributions for screw, plate, endplate and cage displacement were investigated under differing exercise modes.</p><p><strong>Results: </strong>Stress levels upon QACP screw were maximized for over-extension exercise (243.3 MPa, 3.35% > TOACP screw). Stress level upon TOACP plate was maximized for over-extension exercise (118.2 MPa, 7.26% > QACP screw). Following QACP cage system implantation, stress on endplate and cage displacement were maximized for extension exercise, which were 27.1%, and 6.3% > TOACP cage system, respectively. Finite element analysis results revealed that topological optimization of the plate can effectively reduce screw stress, thereby enhancing cervical segments' stability during surgery. Furthermore, stress on endplate and cage displacement decreased, indicating great potential in cage sinking and fusion enhancement.</p><p><strong>Conclusions: </strong>Topological optimization of the plate equips the cage system with advantages in clinical applications and biomechanical performance, providing alternative solutions and a theoretical basis for ACP design.</p>\",\"PeriodicalId\":9109,\"journal\":{\"name\":\"Bio-medical materials and engineering\",\"volume\":\" \",\"pages\":\"525-535\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-medical materials and engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/BME-230019\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/BME-230019","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Topological optimization of anterior cervical plate (ACP) and its biomechanic characteristics.
Background: Currently, quadrilateral anterior cervical plate (QACP) is a highly prevalent ACP.
Objective: This study aims to design a novel ACP using topology optimization (TOACP).
Methods: A completed model for C1-C7 cervical segments was established and validated. QACP and TOACP cage systems were implanted within two cervical vertebrae models, respectively, and peak stresses and stress distributions for screw, plate, endplate and cage displacement were investigated under differing exercise modes.
Results: Stress levels upon QACP screw were maximized for over-extension exercise (243.3 MPa, 3.35% > TOACP screw). Stress level upon TOACP plate was maximized for over-extension exercise (118.2 MPa, 7.26% > QACP screw). Following QACP cage system implantation, stress on endplate and cage displacement were maximized for extension exercise, which were 27.1%, and 6.3% > TOACP cage system, respectively. Finite element analysis results revealed that topological optimization of the plate can effectively reduce screw stress, thereby enhancing cervical segments' stability during surgery. Furthermore, stress on endplate and cage displacement decreased, indicating great potential in cage sinking and fusion enhancement.
Conclusions: Topological optimization of the plate equips the cage system with advantages in clinical applications and biomechanical performance, providing alternative solutions and a theoretical basis for ACP design.
期刊介绍:
The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.