基因组、表观基因组和代谢组学数据的综合多组学分析为注意力缺陷/多动障碍提供了新的见解。

IF 1.6 3区 医学 Q3 GENETICS & HEREDITY American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Pub Date : 2023-08-03 DOI:10.1002/ajmg.b.32955
Nikki Hubers, Fiona A. Hagenbeek, René Pool, Sébastien Déjean, Amy C. Harms, Peter J. Roetman, Catharina E. M. van Beijsterveldt, Vassilios Fanos, Erik A. Ehli, Robert R. J. M. Vermeiren, Meike Bartels, Jouke Jan Hottenga, Thomas Hankemeier, Jenny van Dongen, Dorret I. Boomsma
{"title":"基因组、表观基因组和代谢组学数据的综合多组学分析为注意力缺陷/多动障碍提供了新的见解。","authors":"Nikki Hubers,&nbsp;Fiona A. Hagenbeek,&nbsp;René Pool,&nbsp;Sébastien Déjean,&nbsp;Amy C. Harms,&nbsp;Peter J. Roetman,&nbsp;Catharina E. M. van Beijsterveldt,&nbsp;Vassilios Fanos,&nbsp;Erik A. Ehli,&nbsp;Robert R. J. M. Vermeiren,&nbsp;Meike Bartels,&nbsp;Jouke Jan Hottenga,&nbsp;Thomas Hankemeier,&nbsp;Jenny van Dongen,&nbsp;Dorret I. Boomsma","doi":"10.1002/ajmg.b.32955","DOIUrl":null,"url":null,"abstract":"<p>The evolving field of multi-omics combines data and provides methods for simultaneous analysis across several omics levels. Here, we integrated genomics (transmitted and non-transmitted polygenic scores [PGSs]), epigenomics, and metabolomics data in a multi-omics framework to identify biomarkers for Attention-Deficit/Hyperactivity Disorder (ADHD) and investigated the connections among the three omics levels. We first trained single- and next multi-omics models to differentiate between cases and controls in 596 twins (cases = 14.8%) from the Netherlands Twin Register (NTR) demonstrating reasonable in-sample prediction through cross-validation. The multi-omics model selected 30 PGSs, 143 CpGs, and 90 metabolites. We confirmed previous associations of ADHD with glucocorticoid exposure and the transmembrane protein family <i>TMEM</i>, show that the DNA methylation of the <i>MAD1L1</i> gene associated with ADHD has a relation with parental smoking behavior, and present novel findings including associations between indirect genetic effects and CpGs of the <i>STAP2</i> gene. However, out-of-sample prediction in NTR participants (<i>N</i> = 258, cases = 14.3%) and in a clinical sample (<i>N</i> = 145, cases = 51%) did not perform well (range misclassification was [0.40, 0.57]). The results highlighted connections between omics levels, with the strongest connections between non-transmitted PGSs, CpGs, and amino acid levels and show that multi-omics designs considering interrelated omics levels can help unravel the complex biology underlying ADHD.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"195 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.b.32955","citationCount":"0","resultStr":"{\"title\":\"Integrative multi-omics analysis of genomic, epigenomic, and metabolomics data leads to new insights for Attention-Deficit/Hyperactivity Disorder\",\"authors\":\"Nikki Hubers,&nbsp;Fiona A. Hagenbeek,&nbsp;René Pool,&nbsp;Sébastien Déjean,&nbsp;Amy C. Harms,&nbsp;Peter J. Roetman,&nbsp;Catharina E. M. van Beijsterveldt,&nbsp;Vassilios Fanos,&nbsp;Erik A. Ehli,&nbsp;Robert R. J. M. Vermeiren,&nbsp;Meike Bartels,&nbsp;Jouke Jan Hottenga,&nbsp;Thomas Hankemeier,&nbsp;Jenny van Dongen,&nbsp;Dorret I. Boomsma\",\"doi\":\"10.1002/ajmg.b.32955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The evolving field of multi-omics combines data and provides methods for simultaneous analysis across several omics levels. Here, we integrated genomics (transmitted and non-transmitted polygenic scores [PGSs]), epigenomics, and metabolomics data in a multi-omics framework to identify biomarkers for Attention-Deficit/Hyperactivity Disorder (ADHD) and investigated the connections among the three omics levels. We first trained single- and next multi-omics models to differentiate between cases and controls in 596 twins (cases = 14.8%) from the Netherlands Twin Register (NTR) demonstrating reasonable in-sample prediction through cross-validation. The multi-omics model selected 30 PGSs, 143 CpGs, and 90 metabolites. We confirmed previous associations of ADHD with glucocorticoid exposure and the transmembrane protein family <i>TMEM</i>, show that the DNA methylation of the <i>MAD1L1</i> gene associated with ADHD has a relation with parental smoking behavior, and present novel findings including associations between indirect genetic effects and CpGs of the <i>STAP2</i> gene. However, out-of-sample prediction in NTR participants (<i>N</i> = 258, cases = 14.3%) and in a clinical sample (<i>N</i> = 145, cases = 51%) did not perform well (range misclassification was [0.40, 0.57]). The results highlighted connections between omics levels, with the strongest connections between non-transmitted PGSs, CpGs, and amino acid levels and show that multi-omics designs considering interrelated omics levels can help unravel the complex biology underlying ADHD.</p>\",\"PeriodicalId\":7673,\"journal\":{\"name\":\"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics\",\"volume\":\"195 2\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.b.32955\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ajmg.b.32955\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ajmg.b.32955","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

多组学的发展领域结合了数据,并提供了跨多个组学水平同时分析的方法。在这里,我们在多组学框架中整合了基因组学(传播和非传播多基因评分[PGS])、表观基因组学和代谢组学数据,以确定注意力缺陷/多动障碍(ADHD)的生物标志物,并调查了三个组学水平之间的联系。我们首先训练了单个和下一个多组学模型,以区分596对双胞胎的病例和对照组(病例 = 14.8%),通过交叉验证证明了合理的样本内预测。多组学模型选择了30个PGS、143个CpG和90个代谢物。我们证实了先前ADHD与糖皮质激素暴露和跨膜蛋白家族TMEM的关联,表明与ADHD相关的MAD1L1基因的DNA甲基化与父母吸烟行为有关,并提出了新的发现,包括间接遗传效应与STAP2基因CpG之间的关联。然而,NTR参与者的样本外预测(N = 258例 = 14.3%)和临床样本(N = 145例 = 51%)表现不佳(范围错误分类为[0.40,0.57])。结果强调了组学水平之间的联系,非传播的PGS、CpG和氨基酸水平之间的关系最强,并表明考虑相互关联的组学水平的多组学设计有助于解开多动症背后的复杂生物学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrative multi-omics analysis of genomic, epigenomic, and metabolomics data leads to new insights for Attention-Deficit/Hyperactivity Disorder

The evolving field of multi-omics combines data and provides methods for simultaneous analysis across several omics levels. Here, we integrated genomics (transmitted and non-transmitted polygenic scores [PGSs]), epigenomics, and metabolomics data in a multi-omics framework to identify biomarkers for Attention-Deficit/Hyperactivity Disorder (ADHD) and investigated the connections among the three omics levels. We first trained single- and next multi-omics models to differentiate between cases and controls in 596 twins (cases = 14.8%) from the Netherlands Twin Register (NTR) demonstrating reasonable in-sample prediction through cross-validation. The multi-omics model selected 30 PGSs, 143 CpGs, and 90 metabolites. We confirmed previous associations of ADHD with glucocorticoid exposure and the transmembrane protein family TMEM, show that the DNA methylation of the MAD1L1 gene associated with ADHD has a relation with parental smoking behavior, and present novel findings including associations between indirect genetic effects and CpGs of the STAP2 gene. However, out-of-sample prediction in NTR participants (N = 258, cases = 14.3%) and in a clinical sample (N = 145, cases = 51%) did not perform well (range misclassification was [0.40, 0.57]). The results highlighted connections between omics levels, with the strongest connections between non-transmitted PGSs, CpGs, and amino acid levels and show that multi-omics designs considering interrelated omics levels can help unravel the complex biology underlying ADHD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
7.10%
发文量
40
审稿时长
4-8 weeks
期刊介绍: Neuropsychiatric Genetics, Part B of the American Journal of Medical Genetics (AJMG) , provides a forum for experimental and clinical investigations of the genetic mechanisms underlying neurologic and psychiatric disorders. It is a resource for novel genetics studies of the heritable nature of psychiatric and other nervous system disorders, characterized at the molecular, cellular or behavior levels. Neuropsychiatric Genetics publishes eight times per year.
期刊最新文献
Issue Information - TOC Contribution of Rare and Potentially Functionally Relevant Sequence Variants in Schizophrenia Risk-Locus Xq28,distal. Optimizing the Prediction of Depression Remission: A Longitudinal Machine Learning Approach. New Insights Into TRMT10A Syndrome: Case Report and Literature Review. Characterization of Two Novel PNKP Splice-Site Variants in a Proband With Microcephaly, Intellectual Disability, and Multiple Malformations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1