{"title":"软磁Fe-Si-B-P-Cu合金的结晶控制磁化强度。","authors":"Hiroshi Nakajima, Akihiro Osako, Noriharu Yodoshi, Yoshiharu Yamada, Hirofumi Tsukasaki, Ken Harada, Yuki Sakai, Kei Shigematsu, Takumi Nishikubo, Masaki Azuma, Shigeo Mori","doi":"10.1093/jmicro/dfac042","DOIUrl":null,"url":null,"abstract":"<p><p>Soft magnetic materials have low coercive fields and high permeability. Recently, nanocrystalline alloys obtained using annealing amorphous alloys have attracted much interest since nanocrystalline alloys with small grain sizes of tens of nanometers exhibit low coercive fields comparable to that of amorphous alloys. Since nanocrystalline soft magnetic materials attain remarkable soft magnetic properties by controlling the grain size, the crystal grains' microstructure has a substantial influence on the soft magnetic properties. In this research, we examined the magnetic properties of Fe-Si-B-P-Cu nanocrystalline soft magnetic alloys obtained by annealing amorphous alloys. During crystallization, the observation findings reveal the correlation between the generated microstructures and soft magnetic properties.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":"72 4","pages":"274-278"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Magnetization controlled by crystallization in soft magnetic Fe-Si-B-P-Cu alloys.\",\"authors\":\"Hiroshi Nakajima, Akihiro Osako, Noriharu Yodoshi, Yoshiharu Yamada, Hirofumi Tsukasaki, Ken Harada, Yuki Sakai, Kei Shigematsu, Takumi Nishikubo, Masaki Azuma, Shigeo Mori\",\"doi\":\"10.1093/jmicro/dfac042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soft magnetic materials have low coercive fields and high permeability. Recently, nanocrystalline alloys obtained using annealing amorphous alloys have attracted much interest since nanocrystalline alloys with small grain sizes of tens of nanometers exhibit low coercive fields comparable to that of amorphous alloys. Since nanocrystalline soft magnetic materials attain remarkable soft magnetic properties by controlling the grain size, the crystal grains' microstructure has a substantial influence on the soft magnetic properties. In this research, we examined the magnetic properties of Fe-Si-B-P-Cu nanocrystalline soft magnetic alloys obtained by annealing amorphous alloys. During crystallization, the observation findings reveal the correlation between the generated microstructures and soft magnetic properties.</p>\",\"PeriodicalId\":74193,\"journal\":{\"name\":\"Microscopy (Oxford, England)\",\"volume\":\"72 4\",\"pages\":\"274-278\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jmicro/dfac042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jmicro/dfac042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetization controlled by crystallization in soft magnetic Fe-Si-B-P-Cu alloys.
Soft magnetic materials have low coercive fields and high permeability. Recently, nanocrystalline alloys obtained using annealing amorphous alloys have attracted much interest since nanocrystalline alloys with small grain sizes of tens of nanometers exhibit low coercive fields comparable to that of amorphous alloys. Since nanocrystalline soft magnetic materials attain remarkable soft magnetic properties by controlling the grain size, the crystal grains' microstructure has a substantial influence on the soft magnetic properties. In this research, we examined the magnetic properties of Fe-Si-B-P-Cu nanocrystalline soft magnetic alloys obtained by annealing amorphous alloys. During crystallization, the observation findings reveal the correlation between the generated microstructures and soft magnetic properties.