Lilian Y Li, Esha Trivedi, Fiona Helgren, Grace O Allison, Emily Zhang, Savannah N Buchanan, David Pagliaccio, Katherine Durham, Nicholas B Allen, Randy P Auerbach, Stewart A Shankman
{"title":"通过青少年智能手机社交交流捕捉情绪动态。","authors":"Lilian Y Li, Esha Trivedi, Fiona Helgren, Grace O Allison, Emily Zhang, Savannah N Buchanan, David Pagliaccio, Katherine Durham, Nicholas B Allen, Randy P Auerbach, Stewart A Shankman","doi":"10.1037/abn0000855","DOIUrl":null,"url":null,"abstract":"<p><p>Most adolescents with depression remain undiagnosed and untreated-missed opportunities that are costly from both personal and public health perspectives. A promising approach to detecting adolescent depression in real-time and at a large scale is through their social communication on the smartphone (e.g., text messages, social media posts). Past research has shown that language from online social communication reliably indicates interindividual differences in depression. To move toward detecting the emergence of depression symptoms intraindividually, the present study tested whether sentiment (i.e., words connoting positive and negative affect) from smartphone social communication prospectively predicted daily mood fluctuations in 83 adolescents (<i>M</i><sub>age</sub> = 16.49, 73.5% female) with a wide range of depression severity. Participants completed daily mood ratings across a 90-day period, during which 354,278 messages were passively collected from social communication apps. Greater positive sentiment (i.e., more positive weighted composite valence score and a greater proportion of words expressing positive sentiment) predicted more positive next-day mood, controlling for previous-day mood. Moreover, greater proportions of positive and negative sentiment were, respectively, associated with lower anhedonia and greater dysphoria symptoms measured at baseline. Exploratory analyses of nonaffective linguistic features showed that greater use of social engagement words (e.g., friends and affiliation) and emojis (primarily consisting of hearts) predicted more positive changes in mood. Collectively, findings suggest that language from smartphone social communication can detect mood fluctuations in adolescents, laying the foundation for language-based tools to identify periods of heightened depression risk. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":73914,"journal":{"name":"Journal of psychopathology and clinical science","volume":" ","pages":"1072-1084"},"PeriodicalIF":3.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10818010/pdf/","citationCount":"0","resultStr":"{\"title\":\"Capturing mood dynamics through adolescent smartphone social communication.\",\"authors\":\"Lilian Y Li, Esha Trivedi, Fiona Helgren, Grace O Allison, Emily Zhang, Savannah N Buchanan, David Pagliaccio, Katherine Durham, Nicholas B Allen, Randy P Auerbach, Stewart A Shankman\",\"doi\":\"10.1037/abn0000855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most adolescents with depression remain undiagnosed and untreated-missed opportunities that are costly from both personal and public health perspectives. A promising approach to detecting adolescent depression in real-time and at a large scale is through their social communication on the smartphone (e.g., text messages, social media posts). Past research has shown that language from online social communication reliably indicates interindividual differences in depression. To move toward detecting the emergence of depression symptoms intraindividually, the present study tested whether sentiment (i.e., words connoting positive and negative affect) from smartphone social communication prospectively predicted daily mood fluctuations in 83 adolescents (<i>M</i><sub>age</sub> = 16.49, 73.5% female) with a wide range of depression severity. Participants completed daily mood ratings across a 90-day period, during which 354,278 messages were passively collected from social communication apps. Greater positive sentiment (i.e., more positive weighted composite valence score and a greater proportion of words expressing positive sentiment) predicted more positive next-day mood, controlling for previous-day mood. Moreover, greater proportions of positive and negative sentiment were, respectively, associated with lower anhedonia and greater dysphoria symptoms measured at baseline. Exploratory analyses of nonaffective linguistic features showed that greater use of social engagement words (e.g., friends and affiliation) and emojis (primarily consisting of hearts) predicted more positive changes in mood. Collectively, findings suggest that language from smartphone social communication can detect mood fluctuations in adolescents, laying the foundation for language-based tools to identify periods of heightened depression risk. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>\",\"PeriodicalId\":73914,\"journal\":{\"name\":\"Journal of psychopathology and clinical science\",\"volume\":\" \",\"pages\":\"1072-1084\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10818010/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of psychopathology and clinical science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1037/abn0000855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of psychopathology and clinical science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1037/abn0000855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Capturing mood dynamics through adolescent smartphone social communication.
Most adolescents with depression remain undiagnosed and untreated-missed opportunities that are costly from both personal and public health perspectives. A promising approach to detecting adolescent depression in real-time and at a large scale is through their social communication on the smartphone (e.g., text messages, social media posts). Past research has shown that language from online social communication reliably indicates interindividual differences in depression. To move toward detecting the emergence of depression symptoms intraindividually, the present study tested whether sentiment (i.e., words connoting positive and negative affect) from smartphone social communication prospectively predicted daily mood fluctuations in 83 adolescents (Mage = 16.49, 73.5% female) with a wide range of depression severity. Participants completed daily mood ratings across a 90-day period, during which 354,278 messages were passively collected from social communication apps. Greater positive sentiment (i.e., more positive weighted composite valence score and a greater proportion of words expressing positive sentiment) predicted more positive next-day mood, controlling for previous-day mood. Moreover, greater proportions of positive and negative sentiment were, respectively, associated with lower anhedonia and greater dysphoria symptoms measured at baseline. Exploratory analyses of nonaffective linguistic features showed that greater use of social engagement words (e.g., friends and affiliation) and emojis (primarily consisting of hearts) predicted more positive changes in mood. Collectively, findings suggest that language from smartphone social communication can detect mood fluctuations in adolescents, laying the foundation for language-based tools to identify periods of heightened depression risk. (PsycInfo Database Record (c) 2023 APA, all rights reserved).