Daylana P Silva, Matheus Kury, Camila S S Coelho, Mayara Dos S Noronha, Beatriz de O Medeiros, Carolina B André, Cinthia P M Tabchoury, Vanessa Cavalli
{"title":"传统和散装填充生物活性复合材料抑制修复体周围龋齿病变发展的潜力。","authors":"Daylana P Silva, Matheus Kury, Camila S S Coelho, Mayara Dos S Noronha, Beatriz de O Medeiros, Carolina B André, Cinthia P M Tabchoury, Vanessa Cavalli","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To determine caries inhibition potential of conventional and bulk-fill bioactive composites around restorations.</p><p><strong>Methods: </strong>Enamel and dentin blocks were prepared using a diamond saw under water irrigation, finished (SiC, 600- and 800-grit) and polished (SiC 1,200, final polish= 0.2 μm). Blocks were then selected through enamel surface microhardness, and enamel and dentin standard cavities were restored (n=10/group) with conventional bioactive composite (Beautifil II, BTF), bulk-fill bioactive composite (Activa BioACTIVE, ACT), glass-ionomer cement (Ionofil Plus, ION), conventional composite (GrandioSO, GSO), and bulk-fill composite (Admira Fusion X-TRA, ADM). Afterwards, the blocks were subjected to pH cycling: 4 hours in demineralization and 20 hours in remineralization solutions for 7 days, before being cut in the middle. One half was used to calculate the carious lesion area (ΔS) using values obtained by cross-sectional microhardness (CSMH) testing. The other half was submitted to polarized light microscopy (PLM) and scanning electron microscopy (SEM). The % of internal gap formation (GAP) of restorations' replicas were analyzed under SEM. Data were analyzed by ANOVA and Tukey test (α= 5%).</p><p><strong>Results: </strong>In terms of CSMH, ION group exhibited the lowest ΔS values, with no significant difference to ADM. The composites BTF and ACT were similar to each other (P< 0.05) and to their negative controls (GSO and ADM), respectively. ION showed lower caries formation under PLM, whereas the GSO group presented a greater demineralized area. ION presented the highest % of internal GAP formation. Bioactive composites (BTF and ACT) were similar to their corresponding conventional ones (GSO and ADM) in terms of GAP formation.</p><p><strong>Clinical significance: </strong>The glass-ionomer cement was more effective in inhibiting the formation of caries lesions around restorations. Because of the glass-ionomer cement's limited application in high load-bearing areas, the conventional bioactive composite would be a promising clinical choice.</p>","PeriodicalId":7538,"journal":{"name":"American journal of dentistry","volume":"36 3","pages":"136-142"},"PeriodicalIF":0.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The potential of conventional and bulk-fill bioactive composites to inhibit the development of caries lesions around restorations.\",\"authors\":\"Daylana P Silva, Matheus Kury, Camila S S Coelho, Mayara Dos S Noronha, Beatriz de O Medeiros, Carolina B André, Cinthia P M Tabchoury, Vanessa Cavalli\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To determine caries inhibition potential of conventional and bulk-fill bioactive composites around restorations.</p><p><strong>Methods: </strong>Enamel and dentin blocks were prepared using a diamond saw under water irrigation, finished (SiC, 600- and 800-grit) and polished (SiC 1,200, final polish= 0.2 μm). Blocks were then selected through enamel surface microhardness, and enamel and dentin standard cavities were restored (n=10/group) with conventional bioactive composite (Beautifil II, BTF), bulk-fill bioactive composite (Activa BioACTIVE, ACT), glass-ionomer cement (Ionofil Plus, ION), conventional composite (GrandioSO, GSO), and bulk-fill composite (Admira Fusion X-TRA, ADM). Afterwards, the blocks were subjected to pH cycling: 4 hours in demineralization and 20 hours in remineralization solutions for 7 days, before being cut in the middle. One half was used to calculate the carious lesion area (ΔS) using values obtained by cross-sectional microhardness (CSMH) testing. The other half was submitted to polarized light microscopy (PLM) and scanning electron microscopy (SEM). The % of internal gap formation (GAP) of restorations' replicas were analyzed under SEM. Data were analyzed by ANOVA and Tukey test (α= 5%).</p><p><strong>Results: </strong>In terms of CSMH, ION group exhibited the lowest ΔS values, with no significant difference to ADM. The composites BTF and ACT were similar to each other (P< 0.05) and to their negative controls (GSO and ADM), respectively. ION showed lower caries formation under PLM, whereas the GSO group presented a greater demineralized area. ION presented the highest % of internal GAP formation. Bioactive composites (BTF and ACT) were similar to their corresponding conventional ones (GSO and ADM) in terms of GAP formation.</p><p><strong>Clinical significance: </strong>The glass-ionomer cement was more effective in inhibiting the formation of caries lesions around restorations. Because of the glass-ionomer cement's limited application in high load-bearing areas, the conventional bioactive composite would be a promising clinical choice.</p>\",\"PeriodicalId\":7538,\"journal\":{\"name\":\"American journal of dentistry\",\"volume\":\"36 3\",\"pages\":\"136-142\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of dentistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of dentistry","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
The potential of conventional and bulk-fill bioactive composites to inhibit the development of caries lesions around restorations.
Purpose: To determine caries inhibition potential of conventional and bulk-fill bioactive composites around restorations.
Methods: Enamel and dentin blocks were prepared using a diamond saw under water irrigation, finished (SiC, 600- and 800-grit) and polished (SiC 1,200, final polish= 0.2 μm). Blocks were then selected through enamel surface microhardness, and enamel and dentin standard cavities were restored (n=10/group) with conventional bioactive composite (Beautifil II, BTF), bulk-fill bioactive composite (Activa BioACTIVE, ACT), glass-ionomer cement (Ionofil Plus, ION), conventional composite (GrandioSO, GSO), and bulk-fill composite (Admira Fusion X-TRA, ADM). Afterwards, the blocks were subjected to pH cycling: 4 hours in demineralization and 20 hours in remineralization solutions for 7 days, before being cut in the middle. One half was used to calculate the carious lesion area (ΔS) using values obtained by cross-sectional microhardness (CSMH) testing. The other half was submitted to polarized light microscopy (PLM) and scanning electron microscopy (SEM). The % of internal gap formation (GAP) of restorations' replicas were analyzed under SEM. Data were analyzed by ANOVA and Tukey test (α= 5%).
Results: In terms of CSMH, ION group exhibited the lowest ΔS values, with no significant difference to ADM. The composites BTF and ACT were similar to each other (P< 0.05) and to their negative controls (GSO and ADM), respectively. ION showed lower caries formation under PLM, whereas the GSO group presented a greater demineralized area. ION presented the highest % of internal GAP formation. Bioactive composites (BTF and ACT) were similar to their corresponding conventional ones (GSO and ADM) in terms of GAP formation.
Clinical significance: The glass-ionomer cement was more effective in inhibiting the formation of caries lesions around restorations. Because of the glass-ionomer cement's limited application in high load-bearing areas, the conventional bioactive composite would be a promising clinical choice.
期刊介绍:
The American Journal of Dentistry, published by Mosher & Linder, Inc., provides peer-reviewed scientific articles with clinical significance for the general dental practitioner.