{"title":"大鼠非伤害性和样伤害性三叉神经a β传入神经元:不同的电生理特性、机械和化学敏感性。","authors":"Ryan Vaden, Jianguo Gu","doi":"10.1177/17448069221148958","DOIUrl":null,"url":null,"abstract":"<p><p>The role of Aβ-afferents in somatosensory function is often oversimplified as low threshold mechanoreceptors (LTMRs) with large omission of Aβ-afferent involvement in nociception. Recently, we have characterized Aβ-afferent neurons which have large diameter somas in the trigeminal ganglion (TG) and classified them into non-nociceptive and nociceptive-like TG afferent neurons based on their electrophysiological properties. Here, we extend our previous observations to further characterize electrophysiological properties of trigeminal Aβ-afferent neurons and investigate their mechanical and chemical sensitivity by patch-clamp recordings from large-diameter TG neurons in ex vivo TG preparations of adult male and female rats. Based on cluster analysis of electrophysiological properties, trigeminal Aβ-afferent neurons can be classified into five discrete types (type I, IIa, IIb, IIIa, and IIIb), which responded differentially to mechanical stimulation and sensory mediators including serotonin (5-HT), acetylcholine (ACh) and adenosine triphosphate (ATP). Notably, type I neuron action potential (AP) was small in amplitude, width was narrow in duration, and peak dV/dt repolarization was great with no deflection observed, whereas discretely graded differences were observed for type IIa, IIb, IIIa, and IIIb, as AP increased in amplitude, width broadened in duration, and peak dV/dt repolarization reduced with the emergence of increasing deflection. Type I, IIa, and IIb neurons were mostly mechanically sensitive, displaying robust and rapidly adapting mechanically activated current (I<sub>MA</sub>) in response to membrane displacement, while IIIa and IIIb, conversely, were almost all mechanically insensitive. Interestingly, mechanical insensitivity coincided with increased sensitivity to 5-HT and ACh. Together, type I, IIa and IIb display features of LTMR Aβ-afferent neurons while type IIIa and type IIIb show properties of nociceptive Aβ-afferent neurons.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"19 ","pages":"17448069221148958"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0b/e2/10.1177_17448069221148958.PMC9829874.pdf","citationCount":"3","resultStr":"{\"title\":\"Non-nociceptive and nociceptive-like trigeminal Aβ-afferent neurons of rats: Distinct electrophysiological properties, mechanical and chemical sensitivity.\",\"authors\":\"Ryan Vaden, Jianguo Gu\",\"doi\":\"10.1177/17448069221148958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The role of Aβ-afferents in somatosensory function is often oversimplified as low threshold mechanoreceptors (LTMRs) with large omission of Aβ-afferent involvement in nociception. Recently, we have characterized Aβ-afferent neurons which have large diameter somas in the trigeminal ganglion (TG) and classified them into non-nociceptive and nociceptive-like TG afferent neurons based on their electrophysiological properties. Here, we extend our previous observations to further characterize electrophysiological properties of trigeminal Aβ-afferent neurons and investigate their mechanical and chemical sensitivity by patch-clamp recordings from large-diameter TG neurons in ex vivo TG preparations of adult male and female rats. Based on cluster analysis of electrophysiological properties, trigeminal Aβ-afferent neurons can be classified into five discrete types (type I, IIa, IIb, IIIa, and IIIb), which responded differentially to mechanical stimulation and sensory mediators including serotonin (5-HT), acetylcholine (ACh) and adenosine triphosphate (ATP). Notably, type I neuron action potential (AP) was small in amplitude, width was narrow in duration, and peak dV/dt repolarization was great with no deflection observed, whereas discretely graded differences were observed for type IIa, IIb, IIIa, and IIIb, as AP increased in amplitude, width broadened in duration, and peak dV/dt repolarization reduced with the emergence of increasing deflection. Type I, IIa, and IIb neurons were mostly mechanically sensitive, displaying robust and rapidly adapting mechanically activated current (I<sub>MA</sub>) in response to membrane displacement, while IIIa and IIIb, conversely, were almost all mechanically insensitive. Interestingly, mechanical insensitivity coincided with increased sensitivity to 5-HT and ACh. Together, type I, IIa and IIb display features of LTMR Aβ-afferent neurons while type IIIa and type IIIb show properties of nociceptive Aβ-afferent neurons.</p>\",\"PeriodicalId\":19010,\"journal\":{\"name\":\"Molecular Pain\",\"volume\":\"19 \",\"pages\":\"17448069221148958\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0b/e2/10.1177_17448069221148958.PMC9829874.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/17448069221148958\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17448069221148958","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 3
摘要
a - β传入在体感觉功能中的作用通常被过分简化为低阈值机械感受器(LTMRs),而忽略了a - β传入对伤害感觉的参与。最近,我们对三叉神经节(TG)中具有大直径胞体的a β-传入神经元进行了表征,并根据其电生理特性将其分为非伤害性和类伤害性TG传入神经元。在此,我们扩展了之前的观察结果,进一步表征了三叉神经a β传入神经元的电生理特性,并通过膜片钳记录了成年雄性和雌性大鼠离体TG制剂中大直径TG神经元的机械和化学敏感性。根据电生理特性聚类分析,三叉神经a β传入神经元可分为I型、IIa型、IIb型、IIIa型和IIIb型5种类型,它们对机械刺激和5-羟色胺(5-HT)、乙酰胆碱(ACh)、三磷酸腺苷(ATP)等感觉介质的反应存在差异。其中,I型神经元动作电位(AP)振幅小,宽度窄,持续时间短,dV/dt复极峰明显且无偏转,而IIa、IIb、IIIa和IIIb型神经元动作电位(AP)振幅增大,宽度变宽,且随着偏转的增加,dV/dt复极峰减小。I、IIa和IIb型神经元大多是机械敏感的,在响应膜位移时表现出鲁强和快速适应的机械激活电流(IMA),而IIIa和IIIb型神经元则相反,几乎都是机械不敏感的。有趣的是,机械不敏感与对5-羟色胺和乙酰胆碱的敏感性增加同时发生。I型、IIa型和IIb型表现为LTMR a β-传入神经元的特征,而IIIa型和IIIb型表现为伤害性a β-传入神经元的特征。
Non-nociceptive and nociceptive-like trigeminal Aβ-afferent neurons of rats: Distinct electrophysiological properties, mechanical and chemical sensitivity.
The role of Aβ-afferents in somatosensory function is often oversimplified as low threshold mechanoreceptors (LTMRs) with large omission of Aβ-afferent involvement in nociception. Recently, we have characterized Aβ-afferent neurons which have large diameter somas in the trigeminal ganglion (TG) and classified them into non-nociceptive and nociceptive-like TG afferent neurons based on their electrophysiological properties. Here, we extend our previous observations to further characterize electrophysiological properties of trigeminal Aβ-afferent neurons and investigate their mechanical and chemical sensitivity by patch-clamp recordings from large-diameter TG neurons in ex vivo TG preparations of adult male and female rats. Based on cluster analysis of electrophysiological properties, trigeminal Aβ-afferent neurons can be classified into five discrete types (type I, IIa, IIb, IIIa, and IIIb), which responded differentially to mechanical stimulation and sensory mediators including serotonin (5-HT), acetylcholine (ACh) and adenosine triphosphate (ATP). Notably, type I neuron action potential (AP) was small in amplitude, width was narrow in duration, and peak dV/dt repolarization was great with no deflection observed, whereas discretely graded differences were observed for type IIa, IIb, IIIa, and IIIb, as AP increased in amplitude, width broadened in duration, and peak dV/dt repolarization reduced with the emergence of increasing deflection. Type I, IIa, and IIb neurons were mostly mechanically sensitive, displaying robust and rapidly adapting mechanically activated current (IMA) in response to membrane displacement, while IIIa and IIIb, conversely, were almost all mechanically insensitive. Interestingly, mechanical insensitivity coincided with increased sensitivity to 5-HT and ACh. Together, type I, IIa and IIb display features of LTMR Aβ-afferent neurons while type IIIa and type IIIb show properties of nociceptive Aβ-afferent neurons.
期刊介绍:
Molecular Pain is a peer-reviewed, open access journal that considers manuscripts in pain research at the cellular, subcellular and molecular levels. Molecular Pain provides a forum for molecular pain scientists to communicate their research findings in a targeted manner to others in this important and growing field.