飓风干扰后森林和城市蜥蜴脚趾形状的几何形态计量学评估。

IF 2.2 4区 生物学 Q2 BIOLOGY Integrative Organismal Biology Pub Date : 2023-01-01 DOI:10.1093/iob/obad025
R Michaud, T J Hagey, L F De León, L J Revell, K J Avilés-Rodríguez
{"title":"飓风干扰后森林和城市蜥蜴脚趾形状的几何形态计量学评估。","authors":"R Michaud,&nbsp;T J Hagey,&nbsp;L F De León,&nbsp;L J Revell,&nbsp;K J Avilés-Rodríguez","doi":"10.1093/iob/obad025","DOIUrl":null,"url":null,"abstract":"<p><p>Evidence suggests that hurricanes can influence the evolution of organisms, with phenotypic traits involved in adhesion, such as the toepads of arboreal lizards, being particularly susceptible to natural selection imposed by hurricanes. To investigate this idea, we quantified trait variation before and after Hurricanes Irma and Maria (2017) in forest and urban populations of the Puerto Rican lizard <i>Anolis cristatellus</i>. We found that the hurricanes affected toe morphology differently between forest and urban sites. In particular, toepads of the forefeet were longer and narrower in forest, but wider in urban populations, compared to pre-hurricane measures. Toepads of the hind feet were larger in area following the hurricanes. Fore and rear toes increased in length following the hurricane. There were no changes in the number of lamellae scales or lamellae spacing, but lamellae 6-11 of the forefeet shifted proximally following the hurricane. We also measured clinging performance and toe shape. We found that toepad area and toe lengths were stronger predictors of adhesive forces than toepad shape. Our results highlight an interaction between urbanization and hurricanes, demonstrating the importance to consider how urban species will respond to extreme weather events. Additionally, our different results for fore and rear feet highlight the importance of evaluating both of these traits when measuring the morphological response to hurricanes in arboreal lizards.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384016/pdf/","citationCount":"0","resultStr":"{\"title\":\"Geometric Morphometric Assessment of Toe Shape in Forest and Urban Lizards Following Hurricane Disturbances.\",\"authors\":\"R Michaud,&nbsp;T J Hagey,&nbsp;L F De León,&nbsp;L J Revell,&nbsp;K J Avilés-Rodríguez\",\"doi\":\"10.1093/iob/obad025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evidence suggests that hurricanes can influence the evolution of organisms, with phenotypic traits involved in adhesion, such as the toepads of arboreal lizards, being particularly susceptible to natural selection imposed by hurricanes. To investigate this idea, we quantified trait variation before and after Hurricanes Irma and Maria (2017) in forest and urban populations of the Puerto Rican lizard <i>Anolis cristatellus</i>. We found that the hurricanes affected toe morphology differently between forest and urban sites. In particular, toepads of the forefeet were longer and narrower in forest, but wider in urban populations, compared to pre-hurricane measures. Toepads of the hind feet were larger in area following the hurricanes. Fore and rear toes increased in length following the hurricane. There were no changes in the number of lamellae scales or lamellae spacing, but lamellae 6-11 of the forefeet shifted proximally following the hurricane. We also measured clinging performance and toe shape. We found that toepad area and toe lengths were stronger predictors of adhesive forces than toepad shape. Our results highlight an interaction between urbanization and hurricanes, demonstrating the importance to consider how urban species will respond to extreme weather events. Additionally, our different results for fore and rear feet highlight the importance of evaluating both of these traits when measuring the morphological response to hurricanes in arboreal lizards.</p>\",\"PeriodicalId\":13666,\"journal\":{\"name\":\"Integrative Organismal Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384016/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative Organismal Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/iob/obad025\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Organismal Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/iob/obad025","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

有证据表明,飓风可以影响生物体的进化,其中涉及粘附的表型特征,例如树栖蜥蜴的脚趾,特别容易受到飓风施加的自然选择的影响。为了研究这一观点,我们量化了飓风Irma和Maria(2017年)前后波多黎各蜥蜴Anolis cristatellus的森林和城市种群的特征变化。我们发现飓风对森林和城市遗址脚趾形态的影响不同。特别是,与飓风前的测量结果相比,森林中的前脚掌更长、更窄,但城市人口的前脚掌更宽。飓风过后,后脚的脚掌面积更大。飓风过后,前后脚趾的长度增加了。飓风发生后,叶层数和叶层间距没有变化,但前足6-11叶层向近端移动。我们还测量了粘着表现和脚趾形状。我们发现脚趾面积和脚趾长度比脚趾形状更能预测粘附力。我们的研究结果强调了城市化和飓风之间的相互作用,表明了考虑城市物种如何应对极端天气事件的重要性。此外,我们对前脚和后脚的不同结果强调了在测量树栖蜥蜴对飓风的形态反应时评估这两个特征的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geometric Morphometric Assessment of Toe Shape in Forest and Urban Lizards Following Hurricane Disturbances.

Evidence suggests that hurricanes can influence the evolution of organisms, with phenotypic traits involved in adhesion, such as the toepads of arboreal lizards, being particularly susceptible to natural selection imposed by hurricanes. To investigate this idea, we quantified trait variation before and after Hurricanes Irma and Maria (2017) in forest and urban populations of the Puerto Rican lizard Anolis cristatellus. We found that the hurricanes affected toe morphology differently between forest and urban sites. In particular, toepads of the forefeet were longer and narrower in forest, but wider in urban populations, compared to pre-hurricane measures. Toepads of the hind feet were larger in area following the hurricanes. Fore and rear toes increased in length following the hurricane. There were no changes in the number of lamellae scales or lamellae spacing, but lamellae 6-11 of the forefeet shifted proximally following the hurricane. We also measured clinging performance and toe shape. We found that toepad area and toe lengths were stronger predictors of adhesive forces than toepad shape. Our results highlight an interaction between urbanization and hurricanes, demonstrating the importance to consider how urban species will respond to extreme weather events. Additionally, our different results for fore and rear feet highlight the importance of evaluating both of these traits when measuring the morphological response to hurricanes in arboreal lizards.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
6.70%
发文量
48
审稿时长
20 weeks
期刊最新文献
Raccoons Reveal Hidden Diversity in Trabecular Bone Development. Ocean Planning and Conservation in the Age of Climate Change: A Roundtable Discussion. Volumetric versus Element-scaling Mass Estimation and Its Application to Permo-Triassic Tetrapods. The Role of Polycystic Kidney Disease-Like Homologs in Planarian Nervous System Regeneration and Function. Risky Business: Predator Chemical Cues Mediate Morphological Changes in Freshwater Snails.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1