测试同质性:稀疏函数数据的麻烦。

IF 3.1 1区 数学 Q1 STATISTICS & PROBABILITY Journal of the Royal Statistical Society Series B-Statistical Methodology Pub Date : 2023-07-01 DOI:10.1093/jrsssb/qkad021
Changbo Zhu, Jane-Ling Wang
{"title":"测试同质性:稀疏函数数据的麻烦。","authors":"Changbo Zhu,&nbsp;Jane-Ling Wang","doi":"10.1093/jrsssb/qkad021","DOIUrl":null,"url":null,"abstract":"<p><p>Testing the homogeneity between two samples of functional data is an important task. While this is feasible for intensely measured functional data, we explain why it is challenging for sparsely measured functional data and show what can be done for such data. In particular, we show that testing the marginal homogeneity based on point-wise distributions is feasible under some mild constraints and propose a new two-sample statistic that works well with both intensively and sparsely measured functional data. The proposed test statistic is formulated upon energy distance, and the convergence rate of the test statistic to its population version is derived along with the consistency of the associated permutation test. The aptness of our method is demonstrated on both synthetic and real data sets.</p>","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"85 3","pages":"705-731"},"PeriodicalIF":3.1000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/48/e2/qkad021.PMC10376451.pdf","citationCount":"0","resultStr":"{\"title\":\"Testing homogeneity: the trouble with sparse functional data.\",\"authors\":\"Changbo Zhu,&nbsp;Jane-Ling Wang\",\"doi\":\"10.1093/jrsssb/qkad021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Testing the homogeneity between two samples of functional data is an important task. While this is feasible for intensely measured functional data, we explain why it is challenging for sparsely measured functional data and show what can be done for such data. In particular, we show that testing the marginal homogeneity based on point-wise distributions is feasible under some mild constraints and propose a new two-sample statistic that works well with both intensively and sparsely measured functional data. The proposed test statistic is formulated upon energy distance, and the convergence rate of the test statistic to its population version is derived along with the consistency of the associated permutation test. The aptness of our method is demonstrated on both synthetic and real data sets.</p>\",\"PeriodicalId\":49982,\"journal\":{\"name\":\"Journal of the Royal Statistical Society Series B-Statistical Methodology\",\"volume\":\"85 3\",\"pages\":\"705-731\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/48/e2/qkad021.PMC10376451.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society Series B-Statistical Methodology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssb/qkad021\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series B-Statistical Methodology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssb/qkad021","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

测试两个功能数据样本之间的同质性是一项重要的任务。虽然这对于密集测量的功能数据是可行的,但我们解释了为什么它对于稀疏测量的功能数据具有挑战性,并展示了可以为此类数据做些什么。特别是,我们证明了在一些温和的约束条件下,基于点向分布的边际均匀性测试是可行的,并提出了一种新的双样本统计量,它可以很好地处理密集和稀疏测量的功能数据。提出了基于能量距离的检验统计量,并推导了检验统计量对其总体版本的收敛速度以及相关排列检验的一致性。在合成数据集和实际数据集上都证明了该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Testing homogeneity: the trouble with sparse functional data.

Testing the homogeneity between two samples of functional data is an important task. While this is feasible for intensely measured functional data, we explain why it is challenging for sparsely measured functional data and show what can be done for such data. In particular, we show that testing the marginal homogeneity based on point-wise distributions is feasible under some mild constraints and propose a new two-sample statistic that works well with both intensively and sparsely measured functional data. The proposed test statistic is formulated upon energy distance, and the convergence rate of the test statistic to its population version is derived along with the consistency of the associated permutation test. The aptness of our method is demonstrated on both synthetic and real data sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
0.00%
发文量
83
审稿时长
>12 weeks
期刊介绍: Series B (Statistical Methodology) aims to publish high quality papers on the methodological aspects of statistics and data science more broadly. The objective of papers should be to contribute to the understanding of statistical methodology and/or to develop and improve statistical methods; any mathematical theory should be directed towards these aims. The kinds of contribution considered include descriptions of new methods of collecting or analysing data, with the underlying theory, an indication of the scope of application and preferably a real example. Also considered are comparisons, critical evaluations and new applications of existing methods, contributions to probability theory which have a clear practical bearing (including the formulation and analysis of stochastic models), statistical computation or simulation where original methodology is involved and original contributions to the foundations of statistical science. Reviews of methodological techniques are also considered. A paper, even if correct and well presented, is likely to be rejected if it only presents straightforward special cases of previously published work, if it is of mathematical interest only, if it is too long in relation to the importance of the new material that it contains or if it is dominated by computations or simulations of a routine nature.
期刊最新文献
Model-assisted sensitivity analysis for treatment effects under unmeasured confounding via regularized calibrated estimation. Interpretable discriminant analysis for functional data supported on random nonlinear domains with an application to Alzheimer's disease. GENIUS-MAWII: for robust Mendelian randomization with many weak invalid instruments. Doubly robust calibration of prediction sets under covariate shift. Gradient synchronization for multivariate functional data, with application to brain connectivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1