在不确定联合分布的情况下,对不可忽略的非响应数据的平均函数进行非参数推断。

IF 3.1 1区 数学 Q1 STATISTICS & PROBABILITY Journal of the Royal Statistical Society Series B-Statistical Methodology Pub Date : 2023-05-08 eCollection Date: 2023-07-01 DOI:10.1093/jrsssb/qkad047
Wei Li, Wang Miao, Eric Tchetgen Tchetgen
{"title":"在不确定联合分布的情况下,对不可忽略的非响应数据的平均函数进行非参数推断。","authors":"Wei Li, Wang Miao, Eric Tchetgen Tchetgen","doi":"10.1093/jrsssb/qkad047","DOIUrl":null,"url":null,"abstract":"<p><p>We consider identification and inference about mean functionals of observed covariates and an outcome variable subject to non-ignorable missingness. By leveraging a shadow variable, we establish a necessary and sufficient condition for identification of the mean functional even if the full data distribution is not identified. We further characterize a necessary condition for <math><msqrt><mi>n</mi></msqrt></math>-estimability of the mean functional. This condition naturally strengthens the identifying condition, and it requires the existence of a function as a solution to a representer equation that connects the shadow variable to the mean functional. Solutions to the representer equation may not be unique, which presents substantial challenges for non-parametric estimation, and standard theories for non-parametric sieve estimators are not applicable here. We construct a consistent estimator of the solution set and then adapt the theory of extremum estimators to find from the estimated set a consistent estimator of an appropriately chosen solution. The estimator is asymptotically normal, locally efficient and attains the semi-parametric efficiency bound under certain regularity conditions. We illustrate the proposed approach via simulations and a real data application on home pricing.</p>","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"85 3","pages":"913-935"},"PeriodicalIF":3.1000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376447/pdf/","citationCount":"0","resultStr":"{\"title\":\"Non-parametric inference about mean functionals of non-ignorable non-response data without identifying the joint distribution.\",\"authors\":\"Wei Li, Wang Miao, Eric Tchetgen Tchetgen\",\"doi\":\"10.1093/jrsssb/qkad047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider identification and inference about mean functionals of observed covariates and an outcome variable subject to non-ignorable missingness. By leveraging a shadow variable, we establish a necessary and sufficient condition for identification of the mean functional even if the full data distribution is not identified. We further characterize a necessary condition for <math><msqrt><mi>n</mi></msqrt></math>-estimability of the mean functional. This condition naturally strengthens the identifying condition, and it requires the existence of a function as a solution to a representer equation that connects the shadow variable to the mean functional. Solutions to the representer equation may not be unique, which presents substantial challenges for non-parametric estimation, and standard theories for non-parametric sieve estimators are not applicable here. We construct a consistent estimator of the solution set and then adapt the theory of extremum estimators to find from the estimated set a consistent estimator of an appropriately chosen solution. The estimator is asymptotically normal, locally efficient and attains the semi-parametric efficiency bound under certain regularity conditions. We illustrate the proposed approach via simulations and a real data application on home pricing.</p>\",\"PeriodicalId\":49982,\"journal\":{\"name\":\"Journal of the Royal Statistical Society Series B-Statistical Methodology\",\"volume\":\"85 3\",\"pages\":\"913-935\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376447/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society Series B-Statistical Methodology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssb/qkad047\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series B-Statistical Methodology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssb/qkad047","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是观测协变量和结果变量的均值函数的识别和推断,这些协变量和结果变量存在不可忽略的缺失。通过利用影子变量,我们建立了一个必要且充分的条件,即使没有识别出完整的数据分布,也能识别出均值函数。我们进一步描述了平均函数 n 次可估计性的必要条件。这个条件自然加强了识别条件,它要求存在一个函数,作为连接影子变量和均值函数的代表方程的解。代表方程的解可能不是唯一的,这给非参数估计带来了巨大挑战,非参数筛估计器的标准理论在此并不适用。我们构建了一个解集的一致估计器,然后利用极值估计器理论,从估计的解集中找到一个适当选择的解的一致估计器。该估计器具有渐近正态性、局部高效性,并在某些规则性条件下达到了半参数效率约束。我们通过模拟和房屋定价的真实数据应用来说明所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-parametric inference about mean functionals of non-ignorable non-response data without identifying the joint distribution.

We consider identification and inference about mean functionals of observed covariates and an outcome variable subject to non-ignorable missingness. By leveraging a shadow variable, we establish a necessary and sufficient condition for identification of the mean functional even if the full data distribution is not identified. We further characterize a necessary condition for n-estimability of the mean functional. This condition naturally strengthens the identifying condition, and it requires the existence of a function as a solution to a representer equation that connects the shadow variable to the mean functional. Solutions to the representer equation may not be unique, which presents substantial challenges for non-parametric estimation, and standard theories for non-parametric sieve estimators are not applicable here. We construct a consistent estimator of the solution set and then adapt the theory of extremum estimators to find from the estimated set a consistent estimator of an appropriately chosen solution. The estimator is asymptotically normal, locally efficient and attains the semi-parametric efficiency bound under certain regularity conditions. We illustrate the proposed approach via simulations and a real data application on home pricing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
0.00%
发文量
83
审稿时长
>12 weeks
期刊介绍: Series B (Statistical Methodology) aims to publish high quality papers on the methodological aspects of statistics and data science more broadly. The objective of papers should be to contribute to the understanding of statistical methodology and/or to develop and improve statistical methods; any mathematical theory should be directed towards these aims. The kinds of contribution considered include descriptions of new methods of collecting or analysing data, with the underlying theory, an indication of the scope of application and preferably a real example. Also considered are comparisons, critical evaluations and new applications of existing methods, contributions to probability theory which have a clear practical bearing (including the formulation and analysis of stochastic models), statistical computation or simulation where original methodology is involved and original contributions to the foundations of statistical science. Reviews of methodological techniques are also considered. A paper, even if correct and well presented, is likely to be rejected if it only presents straightforward special cases of previously published work, if it is of mathematical interest only, if it is too long in relation to the importance of the new material that it contains or if it is dominated by computations or simulations of a routine nature.
期刊最新文献
Model-assisted sensitivity analysis for treatment effects under unmeasured confounding via regularized calibrated estimation. Interpretable discriminant analysis for functional data supported on random nonlinear domains with an application to Alzheimer's disease. GENIUS-MAWII: for robust Mendelian randomization with many weak invalid instruments. Doubly robust calibration of prediction sets under covariate shift. Gradient synchronization for multivariate functional data, with application to brain connectivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1