结合分子和放射学特征评估乳腺癌的风险。

IF 7 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Annual Review of Biomedical Data Science Pub Date : 2023-08-10 DOI:10.1146/annurev-biodatasci-020722-092748
Alex A Nguyen, Anne Marie McCarthy, Despina Kontos
{"title":"结合分子和放射学特征评估乳腺癌的风险。","authors":"Alex A Nguyen,&nbsp;Anne Marie McCarthy,&nbsp;Despina Kontos","doi":"10.1146/annurev-biodatasci-020722-092748","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer risk is highly variable within the population and current research is leading the shift toward personalized medicine. By accurately assessing an individual woman's risk, we can reduce the risk of over/undertreatment by preventing unnecessary procedures or by elevating screening procedures. Breast density measured from conventional mammography has been established as one of the most dominant risk factors for breast cancer; however, it is currently limited by its ability to characterize more complex breast parenchymal patterns that have been shown to provide additional information to strengthen cancer risk models. Molecular factors ranging from high penetrance, or high likelihood that a mutation will show signs and symptoms of the disease, to combinations of gene mutations with low penetrance have shown promise for augmenting risk assessment. Although imaging biomarkers and molecular biomarkers have both individually demonstrated improved performance in risk assessment, few studies have evaluated them together. This review aims to highlight the current state of the art in breast cancer risk assessment using imaging and genetic biomarkers.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Molecular and Radiomic Features for Risk Assessment in Breast Cancer.\",\"authors\":\"Alex A Nguyen,&nbsp;Anne Marie McCarthy,&nbsp;Despina Kontos\",\"doi\":\"10.1146/annurev-biodatasci-020722-092748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer risk is highly variable within the population and current research is leading the shift toward personalized medicine. By accurately assessing an individual woman's risk, we can reduce the risk of over/undertreatment by preventing unnecessary procedures or by elevating screening procedures. Breast density measured from conventional mammography has been established as one of the most dominant risk factors for breast cancer; however, it is currently limited by its ability to characterize more complex breast parenchymal patterns that have been shown to provide additional information to strengthen cancer risk models. Molecular factors ranging from high penetrance, or high likelihood that a mutation will show signs and symptoms of the disease, to combinations of gene mutations with low penetrance have shown promise for augmenting risk assessment. Although imaging biomarkers and molecular biomarkers have both individually demonstrated improved performance in risk assessment, few studies have evaluated them together. This review aims to highlight the current state of the art in breast cancer risk assessment using imaging and genetic biomarkers.</p>\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biodatasci-020722-092748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-020722-092748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌的风险在人群中是高度可变的,目前的研究正引领着向个性化医疗的转变。通过准确评估女性个体的风险,我们可以通过避免不必要的手术或提高筛查程序来减少过度/治疗不足的风险。传统乳房x光检查测量的乳腺密度已被确定为乳腺癌最主要的危险因素之一;然而,它目前的局限性在于其表征更复杂的乳腺实质模式的能力,这些模式已被证明为加强癌症风险模型提供了额外的信息。从高外显率(或突变极有可能表现出疾病的体征和症状)到低外显率的基因突变组合等分子因素显示出增加风险评估的希望。虽然成像生物标志物和分子生物标志物都单独证明了在风险评估方面的性能提高,但很少有研究将它们结合起来进行评估。本文综述了利用影像学和遗传生物标志物进行乳腺癌风险评估的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining Molecular and Radiomic Features for Risk Assessment in Breast Cancer.

Breast cancer risk is highly variable within the population and current research is leading the shift toward personalized medicine. By accurately assessing an individual woman's risk, we can reduce the risk of over/undertreatment by preventing unnecessary procedures or by elevating screening procedures. Breast density measured from conventional mammography has been established as one of the most dominant risk factors for breast cancer; however, it is currently limited by its ability to characterize more complex breast parenchymal patterns that have been shown to provide additional information to strengthen cancer risk models. Molecular factors ranging from high penetrance, or high likelihood that a mutation will show signs and symptoms of the disease, to combinations of gene mutations with low penetrance have shown promise for augmenting risk assessment. Although imaging biomarkers and molecular biomarkers have both individually demonstrated improved performance in risk assessment, few studies have evaluated them together. This review aims to highlight the current state of the art in breast cancer risk assessment using imaging and genetic biomarkers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.10
自引率
1.70%
发文量
0
期刊介绍: The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.
期刊最新文献
The Evolutionary Interplay of Somatic and Germline Mutation Rates. Centralized and Federated Models for the Analysis of Clinical Data. Mapping the Human Cell Surface Interactome: A Key to Decode Cell-to-Cell Communication. Data Science Methods for Real-World Evidence Generation in Real-World Data. Graph Artificial Intelligence in Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1