{"title":"自然和社会环境因素有助于新冠肺炎的传播性:来自改进的SEIR模型的证据。","authors":"Jie Li, Kun Jia, Wenwu Zhao, Bo Yuan, Yanxu Liu","doi":"10.1007/s00484-023-02539-8","DOIUrl":null,"url":null,"abstract":"<div><h2>Abstract </h2><div><p>COVID-19 has ravaged Brazil, and its spread showed spatial heterogeneity. Changes in the environment have been implicated as potential factors involved in COVID-19 transmission. However, considerable research efforts have not elucidated the risk of environmental factors on COVID-19 transmission from the perspective of infectious disease dynamics. The aim of this study is to model the influence of the environment on COVID-19 transmission and to analyze how the socio-ecological factors affecting the probability of virus transmission in 10 states dramatically shifted during the early stages of the epidemic in Brazil. First, this study used a Pearson correlation to analyze the interconnection between COVID-19 morbidity and socio-ecological factors and identified factors with significant correlations as the dominant factors affecting COVID-19 transmission. Then, the time-lag effect of dominant factors on the morbidity of COVID-19 was investigated by constructing a distributed lag nonlinear model and standard two-stage meta-analytic model, and the results were considered in the improved SEIR model. Lastly, a machine learning method was introduced to explore the nonlinear relationship between the environmental propagation probability and socio-ecological factors. By analyzing the impact of environmental factors on virus transmission, it can be found that population mobility directly caused by human activities had a greater impact on virus transmission than temperature and humidity. The heterogeneity of meteorological factors can be accounted for by the diverse climate patterns in Brazil. The improved SEIR model was adopted to explore the interconnection of COVID-19 transmission and the environment, which revealed a new strategy to probe the causal links between them.</p></div></div>","PeriodicalId":588,"journal":{"name":"International Journal of Biometeorology","volume":"67 11","pages":"1789 - 1802"},"PeriodicalIF":3.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural and socio-environmental factors contribute to the transmissibility of COVID-19: evidence from an improved SEIR model\",\"authors\":\"Jie Li, Kun Jia, Wenwu Zhao, Bo Yuan, Yanxu Liu\",\"doi\":\"10.1007/s00484-023-02539-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Abstract </h2><div><p>COVID-19 has ravaged Brazil, and its spread showed spatial heterogeneity. Changes in the environment have been implicated as potential factors involved in COVID-19 transmission. However, considerable research efforts have not elucidated the risk of environmental factors on COVID-19 transmission from the perspective of infectious disease dynamics. The aim of this study is to model the influence of the environment on COVID-19 transmission and to analyze how the socio-ecological factors affecting the probability of virus transmission in 10 states dramatically shifted during the early stages of the epidemic in Brazil. First, this study used a Pearson correlation to analyze the interconnection between COVID-19 morbidity and socio-ecological factors and identified factors with significant correlations as the dominant factors affecting COVID-19 transmission. Then, the time-lag effect of dominant factors on the morbidity of COVID-19 was investigated by constructing a distributed lag nonlinear model and standard two-stage meta-analytic model, and the results were considered in the improved SEIR model. Lastly, a machine learning method was introduced to explore the nonlinear relationship between the environmental propagation probability and socio-ecological factors. By analyzing the impact of environmental factors on virus transmission, it can be found that population mobility directly caused by human activities had a greater impact on virus transmission than temperature and humidity. The heterogeneity of meteorological factors can be accounted for by the diverse climate patterns in Brazil. The improved SEIR model was adopted to explore the interconnection of COVID-19 transmission and the environment, which revealed a new strategy to probe the causal links between them.</p></div></div>\",\"PeriodicalId\":588,\"journal\":{\"name\":\"International Journal of Biometeorology\",\"volume\":\"67 11\",\"pages\":\"1789 - 1802\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biometeorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00484-023-02539-8\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biometeorology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00484-023-02539-8","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Natural and socio-environmental factors contribute to the transmissibility of COVID-19: evidence from an improved SEIR model
Abstract
COVID-19 has ravaged Brazil, and its spread showed spatial heterogeneity. Changes in the environment have been implicated as potential factors involved in COVID-19 transmission. However, considerable research efforts have not elucidated the risk of environmental factors on COVID-19 transmission from the perspective of infectious disease dynamics. The aim of this study is to model the influence of the environment on COVID-19 transmission and to analyze how the socio-ecological factors affecting the probability of virus transmission in 10 states dramatically shifted during the early stages of the epidemic in Brazil. First, this study used a Pearson correlation to analyze the interconnection between COVID-19 morbidity and socio-ecological factors and identified factors with significant correlations as the dominant factors affecting COVID-19 transmission. Then, the time-lag effect of dominant factors on the morbidity of COVID-19 was investigated by constructing a distributed lag nonlinear model and standard two-stage meta-analytic model, and the results were considered in the improved SEIR model. Lastly, a machine learning method was introduced to explore the nonlinear relationship between the environmental propagation probability and socio-ecological factors. By analyzing the impact of environmental factors on virus transmission, it can be found that population mobility directly caused by human activities had a greater impact on virus transmission than temperature and humidity. The heterogeneity of meteorological factors can be accounted for by the diverse climate patterns in Brazil. The improved SEIR model was adopted to explore the interconnection of COVID-19 transmission and the environment, which revealed a new strategy to probe the causal links between them.
期刊介绍:
The Journal publishes original research papers, review articles and short communications on studies examining the interactions between living organisms and factors of the natural and artificial atmospheric environment.
Living organisms extend from single cell organisms, to plants and animals, including humans. The atmospheric environment includes climate and weather, electromagnetic radiation, and chemical and biological pollutants. The journal embraces basic and applied research and practical aspects such as living conditions, agriculture, forestry, and health.
The journal is published for the International Society of Biometeorology, and most membership categories include a subscription to the Journal.