{"title":"基于人诱导多能干细胞的小口径组织工程血管移植物:进展与挑战。","authors":"Junyi Ji, Hongju Xu, Chen Li, Jiesi Luo","doi":"10.1089/ten.TEB.2023.0005","DOIUrl":null,"url":null,"abstract":"<p><p>Small-caliber tissue-engineered vascular grafts (TEVGs, luminal diameter <6 mm) are promising therapies for coronary or peripheral artery bypassing surgeries or emergency treatments of vascular trauma, and a robust seed cell source is required for scalable manufacturing of small-caliber TEVGs with robust mechanical strength and bioactive endothelium in future. Human-induced pluripotent stem cells (hiPSCs) could serve as a robust cell source to derive functional vascular seed cells and potentially lead to generation of immunocompatible engineered vascular tissues. Up to date, this rising field of small-caliber hiPSC-derived TEVG (hiPSC-TEVG) research has received increasing attention and achieved significant progress. Implantable, small-caliber, hiPSC-TEVGs have been generated. These hiPSC-TEVGs displayed rupture pressure and suture retention strength approaching to those of human native saphenous veins, with vessel wall decellularized and luminal surface endothelialized with monolayer of hiPSC-endothelial cells. Meanwhile, a series of challenges remain in this field, including functional maturity of hiPSC-derived vascular cells, poor elastogenesis, suboptimal efficiency of obtaining hiPSC-derived seed cells, and relative low ready availability of hiPSC-TEVGs, which are waiting to be addressed. This review is conceived to introduce representative achievements and challenges in small-caliber TEVG generation using hiPSCs, and encapsulate the potential solution and future directions.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":"29 4","pages":"441-455"},"PeriodicalIF":5.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small-Caliber Tissue-Engineered Vascular Grafts Based on Human-Induced Pluripotent Stem Cells: Progress and Challenges.\",\"authors\":\"Junyi Ji, Hongju Xu, Chen Li, Jiesi Luo\",\"doi\":\"10.1089/ten.TEB.2023.0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small-caliber tissue-engineered vascular grafts (TEVGs, luminal diameter <6 mm) are promising therapies for coronary or peripheral artery bypassing surgeries or emergency treatments of vascular trauma, and a robust seed cell source is required for scalable manufacturing of small-caliber TEVGs with robust mechanical strength and bioactive endothelium in future. Human-induced pluripotent stem cells (hiPSCs) could serve as a robust cell source to derive functional vascular seed cells and potentially lead to generation of immunocompatible engineered vascular tissues. Up to date, this rising field of small-caliber hiPSC-derived TEVG (hiPSC-TEVG) research has received increasing attention and achieved significant progress. Implantable, small-caliber, hiPSC-TEVGs have been generated. These hiPSC-TEVGs displayed rupture pressure and suture retention strength approaching to those of human native saphenous veins, with vessel wall decellularized and luminal surface endothelialized with monolayer of hiPSC-endothelial cells. Meanwhile, a series of challenges remain in this field, including functional maturity of hiPSC-derived vascular cells, poor elastogenesis, suboptimal efficiency of obtaining hiPSC-derived seed cells, and relative low ready availability of hiPSC-TEVGs, which are waiting to be addressed. This review is conceived to introduce representative achievements and challenges in small-caliber TEVG generation using hiPSCs, and encapsulate the potential solution and future directions.</p>\",\"PeriodicalId\":23134,\"journal\":{\"name\":\"Tissue Engineering. Part B, Reviews\",\"volume\":\"29 4\",\"pages\":\"441-455\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering. Part B, Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEB.2023.0005\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEB.2023.0005","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Small-Caliber Tissue-Engineered Vascular Grafts Based on Human-Induced Pluripotent Stem Cells: Progress and Challenges.
Small-caliber tissue-engineered vascular grafts (TEVGs, luminal diameter <6 mm) are promising therapies for coronary or peripheral artery bypassing surgeries or emergency treatments of vascular trauma, and a robust seed cell source is required for scalable manufacturing of small-caliber TEVGs with robust mechanical strength and bioactive endothelium in future. Human-induced pluripotent stem cells (hiPSCs) could serve as a robust cell source to derive functional vascular seed cells and potentially lead to generation of immunocompatible engineered vascular tissues. Up to date, this rising field of small-caliber hiPSC-derived TEVG (hiPSC-TEVG) research has received increasing attention and achieved significant progress. Implantable, small-caliber, hiPSC-TEVGs have been generated. These hiPSC-TEVGs displayed rupture pressure and suture retention strength approaching to those of human native saphenous veins, with vessel wall decellularized and luminal surface endothelialized with monolayer of hiPSC-endothelial cells. Meanwhile, a series of challenges remain in this field, including functional maturity of hiPSC-derived vascular cells, poor elastogenesis, suboptimal efficiency of obtaining hiPSC-derived seed cells, and relative low ready availability of hiPSC-TEVGs, which are waiting to be addressed. This review is conceived to introduce representative achievements and challenges in small-caliber TEVG generation using hiPSCs, and encapsulate the potential solution and future directions.
期刊介绍:
Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.