{"title":"改进监管风险评估中的干预因果预测。","authors":"Louis Anthony Cox","doi":"10.1080/10408444.2023.2229923","DOIUrl":null,"url":null,"abstract":"Abstract In 2022, the US EPA published an important risk assessment concluding that “Compared to the current annual standard, meeting a revised annual standard with a lower level is estimated to reduce PM2.5-associated health risks in the 30 annually-controlled study areas by about 7–9% for a level of 11.0 µg/m3… and 30–37% for a level of 8.0 µg/m3.” These are interventional causal predictions: they predict percentage reductions in mortality risks caused by different counterfactual reductions in fine particulate (PM2.5) levels. Valid causal predictions are possible if: (1) Study designs are used that can support valid causal inferences about the effects of interventions (e.g., quasi-experiments with appropriate control groups); (2) Appropriate causal models and methods are used to analyze the data; (3) Model assumptions are satisfied (at least approximately); and (4) Non-causal sources of exposure-response associations such as confounding, measurement error, and model misspecification are appropriately modeled and adjusted for. This paper examines two long-term mortality studies selected by the EPA to predict reductions in PM2.5-associated risk. Both papers use Cox proportional hazards (PH) models. For these models, none of these four conditions is satisfied, making it difficult to interpret or validate their causal predictions. Scientists, reviewers, regulators, and members of the public can benefit from more trustworthy and credible risk assessments and causal predictions by insisting that risk assessments supporting interventional causal conclusions be based on study designs, methods, and models that are appropriate for predicting effects caused by interventions.","PeriodicalId":10869,"journal":{"name":"Critical Reviews in Toxicology","volume":"53 5","pages":"311-325"},"PeriodicalIF":5.7000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving interventional causal predictions in regulatory risk assessment.\",\"authors\":\"Louis Anthony Cox\",\"doi\":\"10.1080/10408444.2023.2229923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In 2022, the US EPA published an important risk assessment concluding that “Compared to the current annual standard, meeting a revised annual standard with a lower level is estimated to reduce PM2.5-associated health risks in the 30 annually-controlled study areas by about 7–9% for a level of 11.0 µg/m3… and 30–37% for a level of 8.0 µg/m3.” These are interventional causal predictions: they predict percentage reductions in mortality risks caused by different counterfactual reductions in fine particulate (PM2.5) levels. Valid causal predictions are possible if: (1) Study designs are used that can support valid causal inferences about the effects of interventions (e.g., quasi-experiments with appropriate control groups); (2) Appropriate causal models and methods are used to analyze the data; (3) Model assumptions are satisfied (at least approximately); and (4) Non-causal sources of exposure-response associations such as confounding, measurement error, and model misspecification are appropriately modeled and adjusted for. This paper examines two long-term mortality studies selected by the EPA to predict reductions in PM2.5-associated risk. Both papers use Cox proportional hazards (PH) models. For these models, none of these four conditions is satisfied, making it difficult to interpret or validate their causal predictions. Scientists, reviewers, regulators, and members of the public can benefit from more trustworthy and credible risk assessments and causal predictions by insisting that risk assessments supporting interventional causal conclusions be based on study designs, methods, and models that are appropriate for predicting effects caused by interventions.\",\"PeriodicalId\":10869,\"journal\":{\"name\":\"Critical Reviews in Toxicology\",\"volume\":\"53 5\",\"pages\":\"311-325\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10408444.2023.2229923\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10408444.2023.2229923","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Improving interventional causal predictions in regulatory risk assessment.
Abstract In 2022, the US EPA published an important risk assessment concluding that “Compared to the current annual standard, meeting a revised annual standard with a lower level is estimated to reduce PM2.5-associated health risks in the 30 annually-controlled study areas by about 7–9% for a level of 11.0 µg/m3… and 30–37% for a level of 8.0 µg/m3.” These are interventional causal predictions: they predict percentage reductions in mortality risks caused by different counterfactual reductions in fine particulate (PM2.5) levels. Valid causal predictions are possible if: (1) Study designs are used that can support valid causal inferences about the effects of interventions (e.g., quasi-experiments with appropriate control groups); (2) Appropriate causal models and methods are used to analyze the data; (3) Model assumptions are satisfied (at least approximately); and (4) Non-causal sources of exposure-response associations such as confounding, measurement error, and model misspecification are appropriately modeled and adjusted for. This paper examines two long-term mortality studies selected by the EPA to predict reductions in PM2.5-associated risk. Both papers use Cox proportional hazards (PH) models. For these models, none of these four conditions is satisfied, making it difficult to interpret or validate their causal predictions. Scientists, reviewers, regulators, and members of the public can benefit from more trustworthy and credible risk assessments and causal predictions by insisting that risk assessments supporting interventional causal conclusions be based on study designs, methods, and models that are appropriate for predicting effects caused by interventions.
期刊介绍:
Critical Reviews in Toxicology provides up-to-date, objective analyses of topics related to the mechanisms of action, responses, and assessment of health risks due to toxicant exposure. The journal publishes critical, comprehensive reviews of research findings in toxicology and the application of toxicological information in assessing human health hazards and risks. Toxicants of concern include commodity and specialty chemicals such as formaldehyde, acrylonitrile, and pesticides; pharmaceutical agents of all types; consumer products such as macronutrients and food additives; environmental agents such as ambient ozone; and occupational exposures such as asbestos and benzene.