{"title":"BRAF和EZH1/SOP/ZNF148三基因突变分类器的组合提高了不确定甲状腺结节的良性呼叫率。","authors":"Shichen Xu, Gangming Cai, Yun Zhu, Xiaobo Gu, Jing Wu, Xian Cheng, Jiandong Bao, Huixin Yu, Li Zhang","doi":"10.1007/s12022-023-09782-0","DOIUrl":null,"url":null,"abstract":"<p><p>Reliable preoperative diagnosis of thyroid nodules remained challenging because of the inconclusiveness of fine-needle aspiration (FNA) cytology. In the present study, 583 formalin-fixed paraffin embedded (FFPE) thyroid nodule tissues and 161 FNA specimens were enrolled retrospectively. Then BRAF V600E, EZH1 Q571R, SPOP P94R, and ZNF148 mutations among these samples were identified using Sanger sequencing. Based on this four-gene genomic classifier, we proposed a two-step modality to diagnose thyroid nodules to differentiate benign and malignant thyroid nodules. In the FFPE group, thyroid cancers were effectively diagnosed in 37.7% (220/583) of neoplasms by the primary BRAF V600E testing, and 15.7% (57/363) of thyroid nodules could be further determined as benign by subsequent EZH1 Q571R, SPOP P94R, and ZNF148 (we called them \"ESZ\") mutation testing. In the FNA group, 161 BRAF wild-type specimens were classified according to The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC). A total of 7 mutated samples fell within Bethesda categories III-IV, and the mutation rate of \"ESZ\" in Bethesda III-IV categories was 8.4%. The two-step genomic classifier could further improve thyroid nodule diagnosis, which may inform more optimal patient management.</p>","PeriodicalId":55167,"journal":{"name":"Endocrine Pathology","volume":" ","pages":"323-332"},"PeriodicalIF":11.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Combination of BRAF and EZH1/SPOP/ZNF148 Three-Gene Mutational Classifier Improves Benign Call Rate in Indeterminate Thyroid Nodules.\",\"authors\":\"Shichen Xu, Gangming Cai, Yun Zhu, Xiaobo Gu, Jing Wu, Xian Cheng, Jiandong Bao, Huixin Yu, Li Zhang\",\"doi\":\"10.1007/s12022-023-09782-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reliable preoperative diagnosis of thyroid nodules remained challenging because of the inconclusiveness of fine-needle aspiration (FNA) cytology. In the present study, 583 formalin-fixed paraffin embedded (FFPE) thyroid nodule tissues and 161 FNA specimens were enrolled retrospectively. Then BRAF V600E, EZH1 Q571R, SPOP P94R, and ZNF148 mutations among these samples were identified using Sanger sequencing. Based on this four-gene genomic classifier, we proposed a two-step modality to diagnose thyroid nodules to differentiate benign and malignant thyroid nodules. In the FFPE group, thyroid cancers were effectively diagnosed in 37.7% (220/583) of neoplasms by the primary BRAF V600E testing, and 15.7% (57/363) of thyroid nodules could be further determined as benign by subsequent EZH1 Q571R, SPOP P94R, and ZNF148 (we called them \\\"ESZ\\\") mutation testing. In the FNA group, 161 BRAF wild-type specimens were classified according to The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC). A total of 7 mutated samples fell within Bethesda categories III-IV, and the mutation rate of \\\"ESZ\\\" in Bethesda III-IV categories was 8.4%. The two-step genomic classifier could further improve thyroid nodule diagnosis, which may inform more optimal patient management.</p>\",\"PeriodicalId\":55167,\"journal\":{\"name\":\"Endocrine Pathology\",\"volume\":\" \",\"pages\":\"323-332\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrine Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12022-023-09782-0\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12022-023-09782-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
A Combination of BRAF and EZH1/SPOP/ZNF148 Three-Gene Mutational Classifier Improves Benign Call Rate in Indeterminate Thyroid Nodules.
Reliable preoperative diagnosis of thyroid nodules remained challenging because of the inconclusiveness of fine-needle aspiration (FNA) cytology. In the present study, 583 formalin-fixed paraffin embedded (FFPE) thyroid nodule tissues and 161 FNA specimens were enrolled retrospectively. Then BRAF V600E, EZH1 Q571R, SPOP P94R, and ZNF148 mutations among these samples were identified using Sanger sequencing. Based on this four-gene genomic classifier, we proposed a two-step modality to diagnose thyroid nodules to differentiate benign and malignant thyroid nodules. In the FFPE group, thyroid cancers were effectively diagnosed in 37.7% (220/583) of neoplasms by the primary BRAF V600E testing, and 15.7% (57/363) of thyroid nodules could be further determined as benign by subsequent EZH1 Q571R, SPOP P94R, and ZNF148 (we called them "ESZ") mutation testing. In the FNA group, 161 BRAF wild-type specimens were classified according to The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC). A total of 7 mutated samples fell within Bethesda categories III-IV, and the mutation rate of "ESZ" in Bethesda III-IV categories was 8.4%. The two-step genomic classifier could further improve thyroid nodule diagnosis, which may inform more optimal patient management.
期刊介绍:
Endocrine Pathology publishes original articles on clinical and basic aspects of endocrine disorders. Work with animals or in vitro techniques is acceptable if it is relevant to human normal or abnormal endocrinology. Manuscripts will be considered for publication in the form of original articles, case reports, clinical case presentations, reviews, and descriptions of techniques. Submission of a paper implies that it reports unpublished work, except in abstract form, and is not being submitted simultaneously to another publication. Accepted manuscripts become the sole property of Endocrine Pathology and may not be published elsewhere without written consent from the publisher. All articles are subject to review by experienced referees. The Editors and Editorial Board judge manuscripts suitable for publication, and decisions by the Editors are final.