Hierarchical Bayesian Modelling of Variability and Uncertainty in Synthetic Action Potential Traces.

Ross H Johnstone, Rémi Bardenet, David J Gavaghan, Liudmila Polonchuk, Mark R Davies, Gary R Mirams
{"title":"Hierarchical Bayesian Modelling of Variability and Uncertainty in Synthetic Action Potential Traces.","authors":"Ross H Johnstone, Rémi Bardenet, David J Gavaghan, Liudmila Polonchuk, Mark R Davies, Gary R Mirams","doi":"10.22489/CinC.2016.313-458","DOIUrl":null,"url":null,"abstract":"<p><p>There are many sources of uncertainty in the recording and modelling of membrane action potentials (APs) from cardiomyocytes. For example, there are measurement, parameter, and model uncertainties. There is also extrinsic variability between cells, and intrinsic beat-to-beat variability within a single cell. These combined uncertainties and variability make it very difficult to extrapolate predictions from these models, since current AP models have single parameter values and thus produce a single AP trace. We aim to re-parameterise existing AP models to fit experimental data, and to quantify uncertainty associated with ion current densities when measuring and modelling these APs. We then wish to propagate this uncertainty into model predictions, such as ion channel block effected by a pharmaceutical compound. We perform an in silico study using synthetic data generated from different sets of parameters. We then 'forget' these parameter values and re-infer their distributions using hierarchical Markov chain Monte Carlo methods. We find that we can successfully infer the 'correct' distributions for most ion current densities for each AP trace, along with an approximation to the higher-level distribution from which these parameter values were sampled. There is, however, some level of unidentifiability amongst some of the current densities.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"43 ","pages":"1089-1092"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614890/pdf/EMS182583.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2016.313-458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There are many sources of uncertainty in the recording and modelling of membrane action potentials (APs) from cardiomyocytes. For example, there are measurement, parameter, and model uncertainties. There is also extrinsic variability between cells, and intrinsic beat-to-beat variability within a single cell. These combined uncertainties and variability make it very difficult to extrapolate predictions from these models, since current AP models have single parameter values and thus produce a single AP trace. We aim to re-parameterise existing AP models to fit experimental data, and to quantify uncertainty associated with ion current densities when measuring and modelling these APs. We then wish to propagate this uncertainty into model predictions, such as ion channel block effected by a pharmaceutical compound. We perform an in silico study using synthetic data generated from different sets of parameters. We then 'forget' these parameter values and re-infer their distributions using hierarchical Markov chain Monte Carlo methods. We find that we can successfully infer the 'correct' distributions for most ion current densities for each AP trace, along with an approximation to the higher-level distribution from which these parameter values were sampled. There is, however, some level of unidentifiability amongst some of the current densities.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成动作电位踪迹中的变异性和不确定性的层次贝叶斯模型。
心肌细胞膜动作电位(APs)的记录和建模存在许多不确定因素。例如,测量、参数和模型的不确定性。细胞之间也存在外在的可变性,单个细胞内也存在节拍间的内在可变性。这些不确定性和变异性结合在一起,使得从这些模型中推断预测结果变得非常困难,因为目前的 AP 模型只有单一的参数值,因此产生的 AP 曲线也是单一的。我们的目标是对现有 AP 模型重新参数化,以适应实验数据,并量化测量和模拟这些 AP 时与离子电流密度相关的不确定性。然后,我们希望将这种不确定性传播到模型预测中,例如受药物化合物影响的离子通道阻滞。我们使用不同参数集生成的合成数据进行了一项硅学研究。然后,我们 "遗忘 "这些参数值,并使用分层马尔科夫链蒙特卡罗方法重新推断其分布。我们发现,我们可以成功地推断出每个 AP 迹线的大多数离子电流密度的 "正确 "分布,以及这些参数值取样的高层次分布的近似值。不过,在某些电流密度中存在一定程度的不可识别性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Transfer Learning for Improved Classification of Drivers in Atrial Fibrillation. Effects of Biventricular Pacing Locations on Anti-Tachycardia Pacing Success in a Patient-Specific Model. Deep Learning System for Left Ventricular Assist Device Candidate Assessment from Electrocardiograms. Capturing the Influence of Conduction Velocity on Epicardial Activation Patterns Using Uncertainty Quantification. Comparison of Machine Learning Detection of Low Left Ventricular Ejection Fraction Using Individual ECG Leads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1