{"title":"Deep Learning System for Left Ventricular Assist Device Candidate Assessment from Electrocardiograms.","authors":"Antonio Mendoza, Mehdi Razavi, Joseph R Cavallaro","doi":"10.22489/cinc.2023.180","DOIUrl":null,"url":null,"abstract":"<p><p>Left Ventricular Assist Devices (LVADs) are increasingly used as long-term implantation therapy for advanced heart failure patients, where candidacy assessment is crucial for successful treatment and recovery. A Deep Learning system based on Electrocardiogram (ECG) diagnoses criteria to stratify candidacy is proposed, implementing multi-model processing, interpretability, and uncertainty estimation. The approach includes beat segmentation for single-lead classification, 12-lead analysis, and semantic segmentation, achieving state-of-the-art results on the classification evaluation of each model, with multilabel average AUC results of 0.9924, 0.9468, and 0.9956, respectively, presenting a novel approach for LVAD candidacy assessment, serving as an aid for decision-making.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"50 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021018/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/cinc.2023.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Left Ventricular Assist Devices (LVADs) are increasingly used as long-term implantation therapy for advanced heart failure patients, where candidacy assessment is crucial for successful treatment and recovery. A Deep Learning system based on Electrocardiogram (ECG) diagnoses criteria to stratify candidacy is proposed, implementing multi-model processing, interpretability, and uncertainty estimation. The approach includes beat segmentation for single-lead classification, 12-lead analysis, and semantic segmentation, achieving state-of-the-art results on the classification evaluation of each model, with multilabel average AUC results of 0.9924, 0.9468, and 0.9956, respectively, presenting a novel approach for LVAD candidacy assessment, serving as an aid for decision-making.