Deep Learning System for Left Ventricular Assist Device Candidate Assessment from Electrocardiograms.

Computing in cardiology Pub Date : 2023-10-01 Epub Date: 2023-12-26 DOI:10.22489/cinc.2023.180
Antonio Mendoza, Mehdi Razavi, Joseph R Cavallaro
{"title":"Deep Learning System for Left Ventricular Assist Device Candidate Assessment from Electrocardiograms.","authors":"Antonio Mendoza, Mehdi Razavi, Joseph R Cavallaro","doi":"10.22489/cinc.2023.180","DOIUrl":null,"url":null,"abstract":"<p><p>Left Ventricular Assist Devices (LVADs) are increasingly used as long-term implantation therapy for advanced heart failure patients, where candidacy assessment is crucial for successful treatment and recovery. A Deep Learning system based on Electrocardiogram (ECG) diagnoses criteria to stratify candidacy is proposed, implementing multi-model processing, interpretability, and uncertainty estimation. The approach includes beat segmentation for single-lead classification, 12-lead analysis, and semantic segmentation, achieving state-of-the-art results on the classification evaluation of each model, with multilabel average AUC results of 0.9924, 0.9468, and 0.9956, respectively, presenting a novel approach for LVAD candidacy assessment, serving as an aid for decision-making.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"50 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021018/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/cinc.2023.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Left Ventricular Assist Devices (LVADs) are increasingly used as long-term implantation therapy for advanced heart failure patients, where candidacy assessment is crucial for successful treatment and recovery. A Deep Learning system based on Electrocardiogram (ECG) diagnoses criteria to stratify candidacy is proposed, implementing multi-model processing, interpretability, and uncertainty estimation. The approach includes beat segmentation for single-lead classification, 12-lead analysis, and semantic segmentation, achieving state-of-the-art results on the classification evaluation of each model, with multilabel average AUC results of 0.9924, 0.9468, and 0.9956, respectively, presenting a novel approach for LVAD candidacy assessment, serving as an aid for decision-making.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从心电图评估左心室辅助装置候选者的深度学习系统。
左心室辅助装置(LVAD)越来越多地被用作晚期心力衰竭患者的长期植入疗法,其适用性评估对于成功治疗和康复至关重要。本文提出了一种基于心电图(ECG)诊断标准的深度学习系统,用于对候选者进行分层,该系统实现了多模型处理、可解释性和不确定性估计。该方法包括用于单导联分类的搏动分割、12 导联分析和语义分割,每个模型的分类评估结果都达到了最先进水平,多标签平均 AUC 结果分别为 0.9924、0.9468 和 0.9956,为 LVAD 候选评估提供了一种新方法,可作为决策辅助工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Transfer Learning for Improved Classification of Drivers in Atrial Fibrillation. Effects of Biventricular Pacing Locations on Anti-Tachycardia Pacing Success in a Patient-Specific Model. Deep Learning System for Left Ventricular Assist Device Candidate Assessment from Electrocardiograms. Capturing the Influence of Conduction Velocity on Epicardial Activation Patterns Using Uncertainty Quantification. Comparison of Machine Learning Detection of Low Left Ventricular Ejection Fraction Using Individual ECG Leads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1