Jake A Bergquist, Brian Zenger, James Brundage, Rob S MacLeod, Rashmee Shah, Xiangyang Ye, Ann Lyones, Ravi Ranjan, Tolga Tasdizen, T Jared Bunch, Benjamin A Steinberg
{"title":"Comparison of Machine Learning Detection of Low Left Ventricular Ejection Fraction Using Individual ECG Leads.","authors":"Jake A Bergquist, Brian Zenger, James Brundage, Rob S MacLeod, Rashmee Shah, Xiangyang Ye, Ann Lyones, Ravi Ranjan, Tolga Tasdizen, T Jared Bunch, Benjamin A Steinberg","doi":"10.22489/cinc.2023.047","DOIUrl":null,"url":null,"abstract":"<p><p>The 12-lead electrocardiogram (ECG) is the most common front-line diagnosis tool for assessing cardiovascular health, yet traditional ECG analysis cannot detect many diseases. Machine learning (ML) techniques have emerged as a powerful set of techniques for producing automated and robust ECG analysis tools that can often predict diseases and conditions not detectable by traditional ECG analysis. Many contemporary ECG-ML studies have focused on utilizing the full 12-lead ECG; however, with the increased availability of single-lead ECG data from wearable devices, there is a clear motivation to explore the development of single-lead ECG-ML techniques. In this study we developed and applied a deep learning architecture for the detection of low left ventricular ejection fraction (LVEF), and compared the performance of this architecture when it was trained with individual leads of the 12-lead ECG to the performance when trained using the entire 12-lead ECG. We observed that single-lead-trained networks performed similarly to the full 12-lead-trained network. We also noted patterns of agreement and disagreement between network low LVEF predictions across the different lead-trained networks.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"50 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349306/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/cinc.2023.047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The 12-lead electrocardiogram (ECG) is the most common front-line diagnosis tool for assessing cardiovascular health, yet traditional ECG analysis cannot detect many diseases. Machine learning (ML) techniques have emerged as a powerful set of techniques for producing automated and robust ECG analysis tools that can often predict diseases and conditions not detectable by traditional ECG analysis. Many contemporary ECG-ML studies have focused on utilizing the full 12-lead ECG; however, with the increased availability of single-lead ECG data from wearable devices, there is a clear motivation to explore the development of single-lead ECG-ML techniques. In this study we developed and applied a deep learning architecture for the detection of low left ventricular ejection fraction (LVEF), and compared the performance of this architecture when it was trained with individual leads of the 12-lead ECG to the performance when trained using the entire 12-lead ECG. We observed that single-lead-trained networks performed similarly to the full 12-lead-trained network. We also noted patterns of agreement and disagreement between network low LVEF predictions across the different lead-trained networks.