Dapagliflozin attenuates high glucose-and hypoxia/reoxygenation-induced injury via activating AMPK/mTOR-OPA1-mediated mitochondrial autophagy in H9c2 cardiomyocytes.
Weiling Tu, Liang Li, Ming Yi, Junyu Chen, Xiaoqing Wang, Yan Sun
{"title":"Dapagliflozin attenuates high glucose-and hypoxia/reoxygenation-induced injury via activating AMPK/mTOR-OPA1-mediated mitochondrial autophagy in H9c2 cardiomyocytes.","authors":"Weiling Tu, Liang Li, Ming Yi, Junyu Chen, Xiaoqing Wang, Yan Sun","doi":"10.1080/13813455.2023.2252200","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the protective effect of dapagliflozin on H9c2 cardiomyocyte function under high glucose and hypoxia/reoxygenation (HG-H/R) conditions and identified the underlying molecular mechanisms. Dapagliflozin reduced the level of lactate dehydrogenase and reactive oxygen species in cardiomyocytes under HG-H/R conditions and was accompanied by a decrease in caspase-3/9 activity. In addition, Dapagliflozin significantly reduced mitochondrial permeability transition pore opening and increased ATP content, accompanied by upregulation of OPA1 with autophagy-related protein molecules and activation of the AMPK/mTOR signalling pathway in HG-H/R treated cardiomyocytes. OPA1 knockdown or compound C treatment attenuated the protective effects of dapagliflozin on the cardiomyocytes under HG-H/R conditions. Downregulation of OPA1 expression increased mitochondrial intolerance in cardiomyocytes during HG-H/R injury and the AMPK-mTOR-autophagy signalling is a key mechanism for protecting mitochondrial function and reducing cardiomyocyte apoptosis. Collectively, dapagliflozin exerted protective effects on the cardiomyocytes under HG-H/R conditions. Dapagliflozin attenuated myocardial HG-H/R injury by activating AMPK/mTOR-OPA1-mediated mitochondrial autophagy.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":" ","pages":"649-659"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Physiology and Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13813455.2023.2252200","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the protective effect of dapagliflozin on H9c2 cardiomyocyte function under high glucose and hypoxia/reoxygenation (HG-H/R) conditions and identified the underlying molecular mechanisms. Dapagliflozin reduced the level of lactate dehydrogenase and reactive oxygen species in cardiomyocytes under HG-H/R conditions and was accompanied by a decrease in caspase-3/9 activity. In addition, Dapagliflozin significantly reduced mitochondrial permeability transition pore opening and increased ATP content, accompanied by upregulation of OPA1 with autophagy-related protein molecules and activation of the AMPK/mTOR signalling pathway in HG-H/R treated cardiomyocytes. OPA1 knockdown or compound C treatment attenuated the protective effects of dapagliflozin on the cardiomyocytes under HG-H/R conditions. Downregulation of OPA1 expression increased mitochondrial intolerance in cardiomyocytes during HG-H/R injury and the AMPK-mTOR-autophagy signalling is a key mechanism for protecting mitochondrial function and reducing cardiomyocyte apoptosis. Collectively, dapagliflozin exerted protective effects on the cardiomyocytes under HG-H/R conditions. Dapagliflozin attenuated myocardial HG-H/R injury by activating AMPK/mTOR-OPA1-mediated mitochondrial autophagy.
期刊介绍:
Archives of Physiology and Biochemistry: The Journal of Metabolic Diseases is an international peer-reviewed journal which has been relaunched to meet the increasing demand for integrated publication on molecular, biochemical and cellular aspects of metabolic diseases, as well as clinical and therapeutic strategies for their treatment. It publishes full-length original articles, rapid papers, reviews and mini-reviews on selected topics. It is the overall goal of the journal to disseminate novel approaches to an improved understanding of major metabolic disorders.
The scope encompasses all topics related to the molecular and cellular pathophysiology of metabolic diseases like obesity, type 2 diabetes and the metabolic syndrome, and their associated complications.
Clinical studies are considered as an integral part of the Journal and should be related to one of the following topics:
-Dysregulation of hormone receptors and signal transduction
-Contribution of gene variants and gene regulatory processes
-Impairment of intermediary metabolism at the cellular level
-Secretion and metabolism of peptides and other factors that mediate cellular crosstalk
-Therapeutic strategies for managing metabolic diseases
Special issues dedicated to topics in the field will be published regularly.