Li Wang, Baocheng Cui, Keyuan Qiu, Jiao Huang, Changhai Liang
{"title":"Modification of nitrile hydratase from Rhodococcus erythropolis CCM2595 by semirational design to enhance its substrate affinity.","authors":"Li Wang, Baocheng Cui, Keyuan Qiu, Jiao Huang, Changhai Liang","doi":"10.1116/6.0002061","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrile hydratase (NHase, EC 4.2.1.84) is an excellent biocatalyst that catalyzes the hydration of nitrile substances to their corresponding amides. Given its catalytic specificity and eco-friendliness, NHase has extensive applications in the chemical, pharmaceutical, and cosmetic industries. To improve the affinity between Rhodococcus erythropolis CCM2595-derived NHase (ReNHase) and adiponitrile, this study used a semirational design to improve the efficiency of ReNHase in catalyzing the generation of 5-cyanopentanamide from adiponitrile. Enzyme kinetics analysis showed that Km of the mutant ReNHase<sup>B:G196Y</sup> was 3.265 mmol l<sup>-1</sup>, which was lower than that of the wild-type NHase. The affinity of the mutant ReNHase<sup>B:G196Y</sup> to adiponitrile was increased by 36.35%, and the efficiency of the mutant ReNHase<sup>B:G196Y</sup> in catalyzing adiponitrile to 5-cyanopentamide was increased by 10.11%. The analysis of the enzyme-substrate interaction showed that the hydrogen bond length of the mutant ReNHase<sup>B:G196Y</sup> to adiponitrile was shortened by 0.59 Å, which enhanced the interaction between the mutant and adiponitrile and, thereby, increased the substrate affinity. Similarly, the structural analysis showed that the amino acid flexibility near the mutation site of ReNHase<sup>B:G196Y</sup> was increased, which enhanced the binding force between the enzyme and adiponitrile. Our work may provide a new theoretical basis for the modification of substrate affinity of NHase and increase the possibility of industrial applications of the enzyme.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"17 6","pages":"061007"},"PeriodicalIF":1.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0002061","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
Nitrile hydratase (NHase, EC 4.2.1.84) is an excellent biocatalyst that catalyzes the hydration of nitrile substances to their corresponding amides. Given its catalytic specificity and eco-friendliness, NHase has extensive applications in the chemical, pharmaceutical, and cosmetic industries. To improve the affinity between Rhodococcus erythropolis CCM2595-derived NHase (ReNHase) and adiponitrile, this study used a semirational design to improve the efficiency of ReNHase in catalyzing the generation of 5-cyanopentanamide from adiponitrile. Enzyme kinetics analysis showed that Km of the mutant ReNHaseB:G196Y was 3.265 mmol l-1, which was lower than that of the wild-type NHase. The affinity of the mutant ReNHaseB:G196Y to adiponitrile was increased by 36.35%, and the efficiency of the mutant ReNHaseB:G196Y in catalyzing adiponitrile to 5-cyanopentamide was increased by 10.11%. The analysis of the enzyme-substrate interaction showed that the hydrogen bond length of the mutant ReNHaseB:G196Y to adiponitrile was shortened by 0.59 Å, which enhanced the interaction between the mutant and adiponitrile and, thereby, increased the substrate affinity. Similarly, the structural analysis showed that the amino acid flexibility near the mutation site of ReNHaseB:G196Y was increased, which enhanced the binding force between the enzyme and adiponitrile. Our work may provide a new theoretical basis for the modification of substrate affinity of NHase and increase the possibility of industrial applications of the enzyme.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.