R Zhang, Y Chen, D Fan, T Liu, Z Ma, Y Dai, Y Wang, Z Zhu
{"title":"Modelling enzyme inhibition toxicity of ionic liquid from molecular structure via convolutional neural network model.","authors":"R Zhang, Y Chen, D Fan, T Liu, Z Ma, Y Dai, Y Wang, Z Zhu","doi":"10.1080/1062936X.2023.2255517","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning (DL) methods further promote the development of quantitative structure-activity/property relationship (QSAR/QSPR) models by dealing with complex relationships between data. An acetylcholinesterase inhibitory toxicity model of ionic liquids (ILs) was established using a convolution neural network (CNN) combined with support vector machine (SVM), random forest (RF) and multilayer perceptron (MLP). A CNN model was proposed for feature self-learning and extraction of ILs. By comparing with the model results through feature engineering (FE), the model regression results based on the CNN model for feature extraction have been substantially improved. The results showed that all six models (FE-SVM, FE-RF, FE-MLP, CNN-SVM, CNN-RF, and CNN-MLP) had good prediction accuracy, but the results based on the CNN model were better. The hyperparameters of six models were optimized by grid search and the 10-fold cross validation. Compared with the existing models in the literature, the model performance has been further improved. The model could be used as an intelligent tool to guide the design or screening of low-toxicity ILs.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"789-803"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2023.2255517","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning (DL) methods further promote the development of quantitative structure-activity/property relationship (QSAR/QSPR) models by dealing with complex relationships between data. An acetylcholinesterase inhibitory toxicity model of ionic liquids (ILs) was established using a convolution neural network (CNN) combined with support vector machine (SVM), random forest (RF) and multilayer perceptron (MLP). A CNN model was proposed for feature self-learning and extraction of ILs. By comparing with the model results through feature engineering (FE), the model regression results based on the CNN model for feature extraction have been substantially improved. The results showed that all six models (FE-SVM, FE-RF, FE-MLP, CNN-SVM, CNN-RF, and CNN-MLP) had good prediction accuracy, but the results based on the CNN model were better. The hyperparameters of six models were optimized by grid search and the 10-fold cross validation. Compared with the existing models in the literature, the model performance has been further improved. The model could be used as an intelligent tool to guide the design or screening of low-toxicity ILs.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.