{"title":"Typhoon Hato's precipitation characteristics based on PERSIANN","authors":"Jiayang Zhang, Yangbo Chen, Chuan Li","doi":"10.1016/j.tcrr.2021.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>Heavy precipitation induced by typhoons is the main driver of catastrophic flooding, and studying precipitation patterns is important for flood forecasting and early warning. Studying the space-time characteristics of heavy precipitation induced by typhoons requires a large range of observation data that cannot be obtained by ground-based rain gauge networks. Satellite-based estimation provides large domains of precipitation with high space-time resolution, facilitating the analysis of heavy precipitation patterns induced by typhoons. In this study, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) satellite data were used to study the temporal and spatial features of precipitation induced by Typhoon Hato, which was the strongest typhoon of 2017 to make landfall in China. The results show that rainfall on the land lasted for six days from the typhoon making landfall to disappearing, reaching the maximum when the typhoon made landfall. Hato produced extremely high accumulated rainfall in South China, almost 300 mm in Guangdong Province and Guangxi Zhuang Autonomous Region and 260 mm in Hainan Province. The rainfall process was separated into three stages and rainfall was the focus in the second stage (5 h before making landfall to 35 h after making landfall).</p></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"10 2","pages":"Pages 75-86"},"PeriodicalIF":2.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.tcrr.2021.05.001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603221000126","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy precipitation induced by typhoons is the main driver of catastrophic flooding, and studying precipitation patterns is important for flood forecasting and early warning. Studying the space-time characteristics of heavy precipitation induced by typhoons requires a large range of observation data that cannot be obtained by ground-based rain gauge networks. Satellite-based estimation provides large domains of precipitation with high space-time resolution, facilitating the analysis of heavy precipitation patterns induced by typhoons. In this study, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) satellite data were used to study the temporal and spatial features of precipitation induced by Typhoon Hato, which was the strongest typhoon of 2017 to make landfall in China. The results show that rainfall on the land lasted for six days from the typhoon making landfall to disappearing, reaching the maximum when the typhoon made landfall. Hato produced extremely high accumulated rainfall in South China, almost 300 mm in Guangdong Province and Guangxi Zhuang Autonomous Region and 260 mm in Hainan Province. The rainfall process was separated into three stages and rainfall was the focus in the second stage (5 h before making landfall to 35 h after making landfall).
期刊介绍:
Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome.
Scope of the journal includes:
• Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies
• Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings
• Basic theoretical studies of tropical cyclones
• Event reports, compelling images, and topic review reports of tropical cyclones
• Impacts, risk assessments, and risk management techniques related to tropical cyclones