Projections of future tropical cyclone landfalling activity in the East Asia region

IF 2.4 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Tropical Cyclone Research and Review Pub Date : 2024-12-01 DOI:10.1016/j.tcrr.2024.11.004
Kin Sik Liu , Johnny C.L. Chan , Bruce Chong , Homan Wong
{"title":"Projections of future tropical cyclone landfalling activity in the East Asia region","authors":"Kin Sik Liu ,&nbsp;Johnny C.L. Chan ,&nbsp;Bruce Chong ,&nbsp;Homan Wong","doi":"10.1016/j.tcrr.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>This study reveals the possible future changes in tropical cyclone (TC) landfalling activity along the East Asian coast under different climate change scenarios based on global circulation model (GCM) simulations. We first identify those GCMs that have the “best” performance in simulating the TC activity over the western North Pacific (WNP) during the current climate (1979–2014) by examining the simulated TCs in each of the GCMs and then compare these simulated TCs with the observed TC climatological features of annual frequency, track densities and genesis locations. Based on such comparisons, we have identified five (TaiESM1, EC-Earth3, ACCESS-CM2, ACCESS-ESM1-5 and HadGEM3-GC31-LL) models among all the available GCMs. A multi-model ensemble gives a further improvement when compared with observations.</div><div>Future projections from some of these models are then used to identify the frequency of TC activity over the entire WNP as well as landfalling TCs in six East Asia coastal regions under two climate change scenarios (SSP2-4.5 and SSP5-8.5) for two periods, 2041-70 and 2071-2100. A bias-correction method is also applied to the projected intensity of these landfalling TCs to estimate the landfall intensity.</div><div>In general, these GCMs project a possible decrease in TC genesis frequency over the entire WNP, consistent with the results of most of the other studies. At mid-century, decreases in TC genesis frequency are projected to be around 10% for both scenarios. Towards the end of the century, the decreases will be more significant, with the percentage changes of 14.9% (SSP2-4.5) and 22.4% (SSP5-8.5). For landfalling TCs, the northern part of the East Asian coast will likely have an increase in frequency, ranging from 17 to 60% but a decrease of 14–27% in the southern part. In general, the average intensity of landfalling TCs will likely increase although the percentages are not large, ranging from 2 to 14%.</div></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"13 4","pages":"Pages 328-343"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603224000584","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study reveals the possible future changes in tropical cyclone (TC) landfalling activity along the East Asian coast under different climate change scenarios based on global circulation model (GCM) simulations. We first identify those GCMs that have the “best” performance in simulating the TC activity over the western North Pacific (WNP) during the current climate (1979–2014) by examining the simulated TCs in each of the GCMs and then compare these simulated TCs with the observed TC climatological features of annual frequency, track densities and genesis locations. Based on such comparisons, we have identified five (TaiESM1, EC-Earth3, ACCESS-CM2, ACCESS-ESM1-5 and HadGEM3-GC31-LL) models among all the available GCMs. A multi-model ensemble gives a further improvement when compared with observations.
Future projections from some of these models are then used to identify the frequency of TC activity over the entire WNP as well as landfalling TCs in six East Asia coastal regions under two climate change scenarios (SSP2-4.5 and SSP5-8.5) for two periods, 2041-70 and 2071-2100. A bias-correction method is also applied to the projected intensity of these landfalling TCs to estimate the landfall intensity.
In general, these GCMs project a possible decrease in TC genesis frequency over the entire WNP, consistent with the results of most of the other studies. At mid-century, decreases in TC genesis frequency are projected to be around 10% for both scenarios. Towards the end of the century, the decreases will be more significant, with the percentage changes of 14.9% (SSP2-4.5) and 22.4% (SSP5-8.5). For landfalling TCs, the northern part of the East Asian coast will likely have an increase in frequency, ranging from 17 to 60% but a decrease of 14–27% in the southern part. In general, the average intensity of landfalling TCs will likely increase although the percentages are not large, ranging from 2 to 14%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Tropical Cyclone Research and Review
Tropical Cyclone Research and Review METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
3.40%
发文量
184
审稿时长
30 weeks
期刊介绍: Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome. Scope of the journal includes: • Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies • Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings • Basic theoretical studies of tropical cyclones • Event reports, compelling images, and topic review reports of tropical cyclones • Impacts, risk assessments, and risk management techniques related to tropical cyclones
期刊最新文献
Development of strong asymmetric convection leading to rapid intensification of tropical cyclones Application research of wind profile radar in short-term heavy rainfall forecast of typhoon in Fujian Province Hindcasting the typhoon haiyan storm surge in coastal eastern leyte A method to automatically ascertain the identities of tropical cyclones in tropical cyclone warning messages Projections of future tropical cyclone landfalling activity in the East Asia region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1