Involvement of a Basic Helix-Loop-Helix Gene BHLHE40 in Specification of Chicken Retinal Pigment Epithelium.

IF 2.2 Q3 DEVELOPMENTAL BIOLOGY Journal of Developmental Biology Pub Date : 2022-10-29 DOI:10.3390/jdb10040045
Toshiki Kinuhata, Keita Sato, Tetsuya Bando, Taro Mito, Satoru Miyaishi, Tsutomu Nohno, Hideyo Ohuchi
{"title":"Involvement of a Basic Helix-Loop-Helix Gene <i>BHLHE40</i> in Specification of Chicken Retinal Pigment Epithelium.","authors":"Toshiki Kinuhata,&nbsp;Keita Sato,&nbsp;Tetsuya Bando,&nbsp;Taro Mito,&nbsp;Satoru Miyaishi,&nbsp;Tsutomu Nohno,&nbsp;Hideyo Ohuchi","doi":"10.3390/jdb10040045","DOIUrl":null,"url":null,"abstract":"<p><p>The first event of differentiation and morphogenesis in the optic vesicle (OV) is specification of the neural retina (NR) and retinal pigment epithelium (RPE), separating the inner and outer layers of the optic cup, respectively. Here, we focus on a basic helix-loop-helix gene, <i>BHLHE40</i>, which has been shown to be expressed by the developing RPE in mice and zebrafish. Firstly, we examined the expression pattern of <i>BHLHE40</i> in the developing chicken eye primordia by in situ hybridization. Secondly, <i>BHLHE40</i> overexpression was performed with in ovo electroporation and its effects on optic cup morphology and expression of NR and RPE marker genes were examined. Thirdly, we examined the expression pattern of <i>BHLHE40</i> in <i>LHX1</i>-overexpressed optic cup. <i>BHLHE40</i> expression emerged in a subset of cells of the OV at Hamburger and Hamilton stage 14 and became confined to the outer layer of the OV and the ciliary marginal zone of the retina by stage 17. <i>BHLHE40</i> overexpression in the prospective NR resulted in ectopic induction of <i>OTX2</i> and repression of <i>VSX2</i>. Conversely, <i>BHLHE40</i> was repressed in the second NR after <i>LHX1</i> overexpression. These results suggest that emergence of <i>BHLHE40</i> expression in the OV is involved in initial RPE specification and that BHLHE40 plays a role in separation of the early OV domains by maintaining <i>OTX2</i> expression and antagonizing an NR developmental program.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"10 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680343/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jdb10040045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The first event of differentiation and morphogenesis in the optic vesicle (OV) is specification of the neural retina (NR) and retinal pigment epithelium (RPE), separating the inner and outer layers of the optic cup, respectively. Here, we focus on a basic helix-loop-helix gene, BHLHE40, which has been shown to be expressed by the developing RPE in mice and zebrafish. Firstly, we examined the expression pattern of BHLHE40 in the developing chicken eye primordia by in situ hybridization. Secondly, BHLHE40 overexpression was performed with in ovo electroporation and its effects on optic cup morphology and expression of NR and RPE marker genes were examined. Thirdly, we examined the expression pattern of BHLHE40 in LHX1-overexpressed optic cup. BHLHE40 expression emerged in a subset of cells of the OV at Hamburger and Hamilton stage 14 and became confined to the outer layer of the OV and the ciliary marginal zone of the retina by stage 17. BHLHE40 overexpression in the prospective NR resulted in ectopic induction of OTX2 and repression of VSX2. Conversely, BHLHE40 was repressed in the second NR after LHX1 overexpression. These results suggest that emergence of BHLHE40 expression in the OV is involved in initial RPE specification and that BHLHE40 plays a role in separation of the early OV domains by maintaining OTX2 expression and antagonizing an NR developmental program.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碱性螺旋-环-螺旋基因BHLHE40参与鸡视网膜色素上皮的形成。
视神经泡(OV)分化和形态发生的第一个事件是神经视网膜(NR)和视网膜色素上皮(RPE)的分化,分别将视神经杯的内层和外层分开。在这里,我们重点研究了一个基本的螺旋-环-螺旋基因BHLHE40,该基因已被证明在小鼠和斑马鱼的RPE发育中表达。首先,利用原位杂交技术检测BHLHE40在发育中的鸡眼原基中的表达规律。其次,采用卵内电穿孔法对BHLHE40进行过表达,检测BHLHE40过表达对视杯形态及NR和RPE标记基因表达的影响。第三,我们检测了BHLHE40在lhx1过表达视杯中的表达模式。BHLHE40在Hamburger和Hamilton 14期出现在OV细胞的一个亚群中,到17期仅限于OV的外层和视网膜的睫状体边缘区。BHLHE40在前瞻性NR中的过表达导致OTX2的异位诱导和VSX2的抑制。相反,LHX1过表达后,BHLHE40在第二NR中被抑制。这些结果表明,BHLHE40在OV中表达的出现参与了最初的RPE规范,并且BHLHE40通过维持OTX2表达和拮抗NR发育程序在OV早期结构域的分离中起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Developmental Biology
Journal of Developmental Biology Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
4.10
自引率
18.50%
发文量
44
审稿时长
11 weeks
期刊介绍: The Journal of Developmental Biology (ISSN 2221-3759) is an international, peer-reviewed, quick-refereeing, open access journal, which publishes reviews, research papers and communications on the development of multicellular organisms at the molecule, cell, tissue, organ and whole organism levels. Our aim is to encourage researchers to effortlessly publish their new findings or concepts rapidly in an open access medium, overseen by their peers. There is no restriction on the length of the papers; the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Journal of Developmental Biology focuses on: -Development mechanisms and genetics -Cell differentiation -Embryonal development -Tissue/organism growth -Metamorphosis and regeneration of the organisms. It involves many biological fields, such as Molecular biology, Genetics, Physiology, Cell biology, Anatomy, Embryology, Cancer research, Neurobiology, Immunology, Ecology, Evolutionary biology.
期刊最新文献
How the Oocyte Nucleolus Is Turned into a Karyosphere: The Role of Heterochromatin and Structural Proteins. Neural Circuit Remodeling: Mechanistic Insights from Invertebrates. Delayed Blastocyst Formation Reduces the Quality and Hatching Ability of Porcine Parthenogenetic Blastocysts by Increasing DNA Damage, Decreasing Cell Proliferation, and Altering Transcription Factor Expression Patterns. Myotube Guidance: Shaping up the Musculoskeletal System. Roles of the NR2F Family in the Development, Disease, and Cancer of the Lung.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1