{"title":"Evolution and biological characterization of H5N1 influenza viruses bearing the clade 2.3.2.1 hemagglutinin gene.","authors":"Xin Xing, Jianzhong Shi, Pengfei Cui, Cheng Yan, Yaping Zhang, Yuancheng Zhang, Congcong Wang, Yuan Chen, Xianying Zeng, Guobin Tian, Liling Liu, Yuntao Guan, Chengjun Li, Yasuo Suzuki, Guohua Deng, Hualan Chen","doi":"10.1080/22221751.2023.2284294","DOIUrl":null,"url":null,"abstract":"<p><p>H5N1 avian influenza viruses bearing the clade 2.3.2.1 hemagglutinin (HA) gene have been widely detected in birds and poultry in several countries. During our routine surveillance, we isolated 28 H5N1 viruses between January 2017 and October 2020. To investigate the genetic relationship of the globally circulating H5N1 viruses and the biological properties of those detected in China, we performed a detailed phylogenic analysis of 274 representative H5N1 strains and analyzed the antigenic properties, receptor-binding preference, and virulence in mice of the H5N1 viruses isolated in China. The phylogenic analysis indicated that the HA genes of the 274 viruses belonged to six subclades, namely clades 2.3.2.1a to 2.3.2.1f; these viruses acquired gene mutations and underwent complicated reassortment to form 58 genotypes, with G43 being the dominant genotype detected in eight Asian and African countries. The 28 H5N1 viruses detected in this study carried the HA of clade 2.3.2.1c (two strains), 2.3.2.1d (three strains), or 2.3.2.1f (23 strains), and formed eight genotypes. These viruses were antigenically well-matched with the H5-Re12 vaccine strain used in China. Animal studies showed that the pathogenicity of the H5N1 viruses ranged from non-lethal to highly lethal in mice. Moreover, the viruses exclusively bound to avian-type receptors and have not acquired the ability to bind to human-type receptors. Our study reveals the overall picture of the evolution of clade 2.3.2.1 H5N1 viruses and provides insights into the control of these viruses.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2284294"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10769554/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Microbes & Infections","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/22221751.2023.2284294","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
H5N1 avian influenza viruses bearing the clade 2.3.2.1 hemagglutinin (HA) gene have been widely detected in birds and poultry in several countries. During our routine surveillance, we isolated 28 H5N1 viruses between January 2017 and October 2020. To investigate the genetic relationship of the globally circulating H5N1 viruses and the biological properties of those detected in China, we performed a detailed phylogenic analysis of 274 representative H5N1 strains and analyzed the antigenic properties, receptor-binding preference, and virulence in mice of the H5N1 viruses isolated in China. The phylogenic analysis indicated that the HA genes of the 274 viruses belonged to six subclades, namely clades 2.3.2.1a to 2.3.2.1f; these viruses acquired gene mutations and underwent complicated reassortment to form 58 genotypes, with G43 being the dominant genotype detected in eight Asian and African countries. The 28 H5N1 viruses detected in this study carried the HA of clade 2.3.2.1c (two strains), 2.3.2.1d (three strains), or 2.3.2.1f (23 strains), and formed eight genotypes. These viruses were antigenically well-matched with the H5-Re12 vaccine strain used in China. Animal studies showed that the pathogenicity of the H5N1 viruses ranged from non-lethal to highly lethal in mice. Moreover, the viruses exclusively bound to avian-type receptors and have not acquired the ability to bind to human-type receptors. Our study reveals the overall picture of the evolution of clade 2.3.2.1 H5N1 viruses and provides insights into the control of these viruses.
期刊介绍:
Emerging Microbes & Infections is a peer-reviewed, open-access journal dedicated to publishing research at the intersection of emerging immunology and microbiology viruses.
The journal's mission is to share information on microbes and infections, particularly those gaining significance in both biological and clinical realms due to increased pathogenic frequency. Emerging Microbes & Infections is committed to bridging the scientific gap between developed and developing countries.
This journal addresses topics of critical biological and clinical importance, including but not limited to:
- Epidemic surveillance
- Clinical manifestations
- Diagnosis and management
- Cellular and molecular pathogenesis
- Innate and acquired immune responses between emerging microbes and their hosts
- Drug discovery
- Vaccine development research
Emerging Microbes & Infections invites submissions of original research articles, review articles, letters, and commentaries, fostering a platform for the dissemination of impactful research in the field.