Noise robust speech recognition using parallel model compensation and voice activity detection methods

Serhat Hizlisoy, Z. Tufekci
{"title":"Noise robust speech recognition using parallel model compensation and voice activity detection methods","authors":"Serhat Hizlisoy, Z. Tufekci","doi":"10.1109/ICEDSA.2016.7818517","DOIUrl":null,"url":null,"abstract":"The main purpose of this study is to increase the performance of a speech recognition system under noisy environments. In this study Voice Activity Detection (VAD) methods is used for estimating the noise model, and Parallel Model Compensation (PMC) is used for estimating the noisy speech model using the clean speech model and noise model which is estimated using a VAD method. Performances of the baseline and four well known VAD methods have been compared for noisy speech recognition. In addition to this, a new VAD method is proposed to estimate parameters of the noise model. The proposed VAD method's speech recognition performance is better than the most of the well-known VAD methods despite less computational requirement of the proposed VAD method compared to these well-known VAD methods.","PeriodicalId":247318,"journal":{"name":"2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA)","volume":"129 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEDSA.2016.7818517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The main purpose of this study is to increase the performance of a speech recognition system under noisy environments. In this study Voice Activity Detection (VAD) methods is used for estimating the noise model, and Parallel Model Compensation (PMC) is used for estimating the noisy speech model using the clean speech model and noise model which is estimated using a VAD method. Performances of the baseline and four well known VAD methods have been compared for noisy speech recognition. In addition to this, a new VAD method is proposed to estimate parameters of the noise model. The proposed VAD method's speech recognition performance is better than the most of the well-known VAD methods despite less computational requirement of the proposed VAD method compared to these well-known VAD methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于并行模型补偿和语音活动检测方法的噪声鲁棒语音识别
本研究的主要目的是提高语音识别系统在噪声环境下的性能。本研究采用语音活动检测(Voice Activity Detection, VAD)方法对噪声模型进行估计,并采用并行模型补偿(Parallel model Compensation, PMC)方法对含噪语音模型进行估计,使用VAD方法对纯净语音模型和噪声模型进行估计。比较了基线和四种已知的VAD方法在噪声语音识别中的性能。此外,提出了一种新的VAD方法来估计噪声模型的参数。与大多数已知的VAD方法相比,所提出的VAD方法的计算量较少,但其语音识别性能优于大多数已知的VAD方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Noise robust speech recognition using parallel model compensation and voice activity detection methods Analysis and design of MIMO antenna for UWB applications based on the super-formula A comparative study up to 1024 bit Euclid's GCD algorithm FPGA implementation and synthesizing On-line measurement of biomass using colloid dielectric probe and open-ended cell. Determination of the aggregation threshold Classification of ECG signals of normal and abnormal subjects using common spatial pattern
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1