Latifah M. Aljafar, T. Alotaiby, Rand R. Al-Yami, S. Alshebeili, J. Zouhair
{"title":"Classification of ECG signals of normal and abnormal subjects using common spatial pattern","authors":"Latifah M. Aljafar, T. Alotaiby, Rand R. Al-Yami, S. Alshebeili, J. Zouhair","doi":"10.1109/ICEDSA.2016.7818547","DOIUrl":null,"url":null,"abstract":"In this paper, an ECG signal classification method is presented to classify multi-lead ECG signals into normal and abnormal classes using Common Spatial Pattern (CSP) as the feature extraction algorithm. The method consists of two main stages: CSP-based feature extraction and classification. After segmenting the signal into non-overlapping segments, each segment is projected onto a CSP projection matrix to extract the training and testing feature vectors. These vectors are used in the classification stage. In this study, three classifiers — linear discriminant analysis (LDA), naive Bayes (NB), and support vector machine (SVM)—were used. The proposed approach was evaluated using 104 subjects' recordings (52 normal and 52 abnormal) from the Physikalisch-Technische Bundesanstalt (PTB) dataset. The three classifiers achieved accuracy rates of 80.65%, 84%, and 100%, respectively.","PeriodicalId":247318,"journal":{"name":"2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEDSA.2016.7818547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, an ECG signal classification method is presented to classify multi-lead ECG signals into normal and abnormal classes using Common Spatial Pattern (CSP) as the feature extraction algorithm. The method consists of two main stages: CSP-based feature extraction and classification. After segmenting the signal into non-overlapping segments, each segment is projected onto a CSP projection matrix to extract the training and testing feature vectors. These vectors are used in the classification stage. In this study, three classifiers — linear discriminant analysis (LDA), naive Bayes (NB), and support vector machine (SVM)—were used. The proposed approach was evaluated using 104 subjects' recordings (52 normal and 52 abnormal) from the Physikalisch-Technische Bundesanstalt (PTB) dataset. The three classifiers achieved accuracy rates of 80.65%, 84%, and 100%, respectively.