A complete U-V-disparity study for stereovision based 3D driving environment analysis

Zhencheng Hu, F. Lamosa, K. Uchimura
{"title":"A complete U-V-disparity study for stereovision based 3D driving environment analysis","authors":"Zhencheng Hu, F. Lamosa, K. Uchimura","doi":"10.1109/3DIM.2005.6","DOIUrl":null,"url":null,"abstract":"Reliable understanding of the 3D driving environment is vital for obstacle detection and adaptive cruise control (ACC) applications. Laser or millimeter wave radars have shown good performance in measuring relative speed and distance in a highway driving environment. However the accuracy of these systems decreases in an urban traffic environment as more confusion occurs due to factors such as parked vehicles, guardrails, poles and motorcycles. A stereovision based sensing system provides an effective supplement to radar-based road scene analysis with its much wider field of view and more accurate lateral information. This paper presents an efficient solution using a stereovision based road scene analysis algorithm which employs the \"U-V-disparity\" concept. This concept is used to classify a 3D road scene into relative surface planes and characterize the features of road pavement surfaces, roadside structures and obstacles. Real-time implementation of the disparity map calculation and the \"U-V-disparity\" classification is also presented.","PeriodicalId":170883,"journal":{"name":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","volume":"29 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2005.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

Abstract

Reliable understanding of the 3D driving environment is vital for obstacle detection and adaptive cruise control (ACC) applications. Laser or millimeter wave radars have shown good performance in measuring relative speed and distance in a highway driving environment. However the accuracy of these systems decreases in an urban traffic environment as more confusion occurs due to factors such as parked vehicles, guardrails, poles and motorcycles. A stereovision based sensing system provides an effective supplement to radar-based road scene analysis with its much wider field of view and more accurate lateral information. This paper presents an efficient solution using a stereovision based road scene analysis algorithm which employs the "U-V-disparity" concept. This concept is used to classify a 3D road scene into relative surface planes and characterize the features of road pavement surfaces, roadside structures and obstacles. Real-time implementation of the disparity map calculation and the "U-V-disparity" classification is also presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于立体视觉的三维驾驶环境分析的整车视差研究
对3D驾驶环境的可靠理解对于障碍物检测和自适应巡航控制(ACC)应用至关重要。激光或毫米波雷达在高速公路行驶环境中显示出良好的相对速度和距离测量性能。然而,在城市交通环境中,由于停车车辆、护栏、电线杆和摩托车等因素导致更多混乱,这些系统的准确性会降低。基于立体视觉的传感系统以其更广阔的视野和更准确的横向信息,为基于雷达的道路场景分析提供了有效的补充。本文提出了一种基于立体视觉的道路场景分析算法,该算法采用了“u - v -视差”的概念。该概念用于将3D道路场景划分为相对的表面平面,并表征道路路面、路边结构和障碍物的特征。给出了视差图计算和“u - v -视差”分类的实时实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A complete U-V-disparity study for stereovision based 3D driving environment analysis Simultaneous determination of registration and deformation parameters among 3D range images 3D digitization of a large model of imperial Rome Evaluating collinearity constraint for automatic range image registration Realistic human head modeling with multi-view hairstyle reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1